Исследование электрофизических параметров полупроводниковых материалов. Расчет температурных зависимостей электрофизических параметров полупроводников Электрофизические свойства полупроводников

ОБЩИЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОННЫХ ПРИБОРАХ

1.1. Классификация

Электронным прибором (ЭП) называют устройство, в котором в результате взаимодействия свободных или связанных носителей заряда с электрическим, магнитным и переменным электромагнит-ным полем обеспечивается преобразование информационного сиг-нала или преобразование вида энергии.

Основными признаками классификации разнообразных по прин-ципу действия, назначению, технологии изготовления, свойствам и параметрам можно считать: вид преобразования сигнала; вид рабо-чей среды и тип носителей заряда; структуру (устройство) и число электродов; способ управления.

По виду преобразования сигнала все ЭП можно разбить на две большие группы. К первой группе относятся ЭП, в которых использу-ется преобразование одного вида энергии в другой. В эту группу вхо-дят электросветовые ЭП (преобразование типа электрический сигнал в световой), фотоэлектронные приборы (световой сигнал в электрический), электромеханические (электрический сигнал в ме-ханический), механоэлектрические ЭП (механический сигнал в элек-трический), оптопары (электрический сигнал в световой и затем сно-ва в электрический)и др.

Ко второй группе обычно относятся электропреобразователь-ные приборы, в которых изменяются параметры электрического сиг-нала (например, амплитуда, фаза, частота и др.).

По виду рабочей среды и типу носителей заряда различают сле-дующие классы электронных приборов: электровакуумные (вакуум, электроны), газоразрядные (разреженный газ, электроны и ионы), полупроводниковые (полупроводник, электроны и дырки), хемотронные (жидкость, ионы и электроны).

Электроды электронного прибора – это элементы его конструк-ции, которые служат для формирования рабочего пространства при-бора и связи его с внешними цепями. Число электродов и их потенциалы определяют физические процессы в приборе. Наиболее на-глядно это в электронных лампах: двухэлектродные (диоды), трех-электродные (триоды), четырехэлектродные (тетроды) и пятиэлект-родные (пентоды).
^

1.2. Режимы, характеристики и параметры электронных приборов


Совокупность условий, определяющих состояние или работу электронного прибора, принято называть режимом электронного прибора, а любую величину, характеризующую этот режим (к приме-ру, ток или напряжение), – параметрами режима. Говорят об усилительных, импульсных, частотных, шумо-вых, температурных и механических свойствах, о надежности и т.п. Количественные сведения об этих свойствах называют параметра-ми прибора . К ним, например, относят коэффициенты передачи токов, характеристические частоты, коэффициент шума, интенсивность отказов, ударную стойкость и др.

Вначале остановимся на понятиях статического и динамическо-го режимов приборов. Статическим называют режим, когда прибор работает при постоянных («статических») напряжениях на электро-дах. В этом режиме токи в цепях электродов не изменяются во вре-мени и распределения зарядов и токов в приборе также постоянны во времени. Другими словами, в статическом режиме все парамет-ры режима не изменяются во времени. Однако, если хотя бы один из параметров режима, например напряжение на каком-то электроде, изменяется во времени, режим называется динамическим.

В динамическом режиме поведение при-бора существенно зависит от скорости или частоты изменения воз-действия (например, напряжения).

У большинства приборов эта зависимость объясняется инерци-онностью физических процессов в приборе, например конечным временем пролета носителей заряда через рабочее пространство или конечным временем жизни носителей. Конечность времени пролета приводит к тому, что мгновенное значение тока электрода, к которому движутся носители, в выбранный момент времени бу-дет определяться не только значением напряжения на электроде в этот момент, но, естественно, и предысторией, т.е. всеми значени-ями напряжения от момента начала движения в приборе до прихо-да носителя заряда к рассматриваемому электроду. Следователь-но, связь мгновенных значений тока и напряжения в динамическом режиме должна отличаться от связи постоянных значений тока и напряжения в статическом режиме. Однако если время пролета значительно меньше периода изменения переменного напряже-ния, то это.отличие во взаимосвязи будет несущественным, т.е. связь мгновенных значений будет практически такой же, как посто-янных величин в статическом режиме. Указанная разновидность динамического режима называется квазистатическим режимом («квази» – означает «как бы» или «как будто»).

Обычно динамический режим получается в результате внешнего воздействия, например входного сигнала. Входной сигнал может быть синусоидальным или импульсным. Малым называют такой сигнал, при котором наблюда-ется линейная связь (прямая пропорциональность) между амплиту-дами выходного и входного сигналов.

^ 1.3. Модели электронных приборов

Как в статическом, так и динамическом режиме анализ основан на использовании системы дифференциальных уравнений, описы-вающих физические процессы: уравнения непрерывности, закон Пу-ассона, уравнения для плотностей токов, кинетическое уравнение Больцмана, учитывающее функцию распределения частиц по коор-динатам и импульсам. Систему этих уравнений принято называть математической моделью приборов.

Для анализа радиоэлектронных схем, содержащих электронные приборы, в большинстве случаев удобнее использовать электриче-ские модели (эквивалентные схемы, схемы замещения), составлен-ные из элементов электрической цепи.

Электрические модели, называемые также эквивалентными схемами, появились на основе анализа математических моделей. Поэтому каждый электрический элемент эквивалентной схемы при-ближенно описывается (представляется) соответствующими математическими выражениями.

Удобство электрических моделей состоит в том, что анализ ди-намических свойств (например, транзистора), особенно при малом сигнале, можно проводить по законам теории электрических цепей.

Эквивалентные схемы для малого сиг-нала обычно называют линейными или малосигнальными, а для большего – нелинейными эквивалентными схемами или нелиней-ными электрическими моделями.
^

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛУПРОВОДНИКОВ

2.1. Концентрация носителей заряда в равновесном состоянии полупроводника

Полупроводниками, как прави-ло, являются твердые тела с регулярной кристаллической структурой. В твердом те-ле концентрация (объемная плотность) атомов велика, поэтому внешние электрон-ные оболочки соседних атомов сильно взаимодействуют, и вместо системы дискрет-ных энергетических уровней, характерной для одного изолированного атома, появля-ется система зон энергетических уровней. Эти зоны уровней называют разрешенными , а области между ними – запрещенными зонами. Верхняя разрешен-ная зона называется зоной проводимости , а первая под ней – валентной зоной.

В физике принята классификация твердых тел на металлы, полупроводники и диэлектрики по ширине запрещенной зоны , от значения которой зависят концент-рация свободных носителей, удельное электрическое сопротивление и ток.

Ширина запрещенной зоны при абсолютной температуре Т=300 К у германия 0,66 эВ, кремния 1,12эВ и арсенида галлия 1,4 эВ.

Беспримесный (чистый) полупроводник без дефектов кристаллической структу-ры называют собственным полупроводником и обозначают буквой i. При температуре абсолютного нуля (T=0 К) в таком полупроводнике все энергетические уровни валентной зоны заполнены валентными электронами, а в зоне проводимости нет электронов. По мере увеличения температуры растет энергия колебательного движения атомов кристаллической решетки и увеличивается вероят-ность разрыва ковалентных (парных) связей атомов, приводящего к образованию свободных электронов , энергия которых соответствует уровням зоны проводимости. Отсутствие одного электрона в ковалентной связи двух соседних атомов, или «вакан-сия», эквивалентно образованию единичного положительного заряда, называемого дыркой.

Появление одного свободного электрона сопровождается об-разованием одной дырки. Говорят, что идет образование (генерация) пар электрон дырка с противоположными знаками заряда.

Если в собственный четырехвалентный кремний (или германий) ввести атом пятивалентного элемента, например фосфора (Р), то че-тыре из пяти валентных электронов введенного атома примеси вступят в связь с че-тырьмя соседними атомами Si (или Ge) и образуют устойчивую оболочку из восьми электронов, а пятый электрон оказывается слабо связанным с ядром атома примеси. Этот «лишний» электрон движется по орбите значительно большего размера и легко (при небольшой затрате энергии) отрывается от примесно-го атома, т.е. становится свободным. При этом неподвижный атом превращается в положительный ион. Свободные электроны «примесного» происхождения добавля-ются к свободным электронам исходного собственного полупроводника, поэтому электрическая проводимость полупроводника при большой концентрации примеси становится преимущественно электронной. Такие примесные полупроводники назы-ваются электронными или п-типа (от слова negative - отрицательный). Примеси, обусловливающие электронную проводимость, называют донорными.

Если в собственный полупроводник, например кремний, ввести примесный атом трехвалентного элемента, например бора (В), галлия (Ga) или алюминия (Аl), то все валентные электроны атома примеси включатся в ковалентные связи с тремя из четырех соседних атомов собственного полупроводника. Для образования устойчивой восьмиэлектронной оболочки (четыре парные связи) примесному атому не хватает одного элек-трона. Им может оказаться один из валентных электронов, который переходит от ближайших атомов кремния. В результате у такого атома кремния появится «вакансия», т.е. дырка, а неподвижный атом примеси превратится в ион с единичным отрицательным зарядом. Примеси, обеспечивающие получение боль-шой концентрации дырок, называют акцепторными («захватывающие» электроны).

Отрыв электрона от донорного атома и валентного электрона от атомов исходно-го (собственного) полупроводника для «передачи» его акцепторному атому требует затраты некоторой энергии, называемой энергией ионизации или активизации при-меси. При температуре абсолютного нуля ионизации нет, но в рабочем диа-пазоне температуры, включающем комнатную температуру, примесные атомы прак-тически полностью ионизированы. Энергия ионизации доноров
и акцепторов
составляет несколько сотых долей электронвольта (эВ), что значительно меньше ши-рины запрещенной зоны . Энергетические уровни электронов донорных атомов («примесные уровни») располагаются в запрещенной зоне вблизи нижней границы («дна») зоны проводимости на расстоянии, равном энергии ионизации . Примесный уровень акцепторов находится в запрещенной зоне на не-большом расстоянии от верхней границы («потолка») валентной зоны.

В собственном полупроводнике концентрации электронов и дырок одинаковы. В примесных полупроводниках они отличаются на много порядков. Носите-ли заряда с большей концентрацией называют основными, а с меньшей – неосновными. В полупроводнике n-типа основные носители – электроны, а в полу-проводнике p-типа – дырки.

Значения концентраций свободных электронов и дырок устанавливаются (состо-яние равновесия) в результате действия двух противоположных процессов: процесса генерации носителей (прямой процесс) и процесса рекомбинации электронов и ды-рок (обратный процесс).

Рекомбинация означает, что свободный электрон восстанавливает ковалентную связь (устраняет вакансию). В состоянии равновесия скорость генерации носителей заряда равна скорости рекомбинации.

^ 2.1.2. Метод расчета концентраций

Концентрация электронов n в зоне проводимости и концентра-ция дырок р в валентной зоне могут быть представлены следующи-ми общими выражениями:

; (2.1)

; (2.2)

В
еличины
и
– плотности квантовых состояний, Функция
в (2.1) есть вероятность того, что состояние с энергией занято электро-ном. Соответственно
означает вероятность отсутствия электрона на уровне в валентной зоне, т.е. вероятность существо-вания дырки.

При квантово-механическом рассмотрении установлено, что

Где h – постоянная Планка; и – эффективные массы электро-нов и дырок.

Вероятностная функция f () в (2.1) и (2.2) определяется по формуле

(2.5)

Которая называется функцией распределения Ферми-Дирака. В этой функции k – постоянная Больцмана, Т – абсолютная температура, а – энергия уровня Ферми. Очевидно, что при
. Поэ-тому формально уровнем Ферми является уровень, вероятность нахождения электрона на котором равна 0,5 (рис. 2.2). При Т > 0 К функция имеет плавный, но быстрый спад приблизительно в интер-вале значений энергии ±2 kT около уровня . При комнатной темпе-ратуре (T=300 К) kT = 0,026 эВ, т.е. ±2 kT = ±0,052 эВ, что значитель-но меньше , составляющего единицы электронвольта. Вероят-ность
при
, и
при
.

Функцию распределения необходимо «привязывать» к зон-ной диаграмме полупроводника. Как правило, для этого надо знать, где находится уровень Ферми. У обычно используемых полупровод-ников находится в запрещенной зоне: в n -полупроводнике – на «расстоянии»
>>2kT от дна зоны проводимости, а в р-полупроводнике – на расстоянии
>> 2kT от потолка валентной зо-ны и в формуле (2.5) можно пренебречь в знаменателе единицей, т.е. функция распределения Ферми-Дирака сводится приближенно к функции распределения Максвелла-Больцмана:

(2.6)

Полупроводники, для которых справедлива функция распределе-ния Максвелла- Больцмана, называют невырожденными. Для них характерно то, что число частиц значительно меньше числа разрешен-ных состояний. Если в полупроводнике уровень Ферми дока-зывается в интервале 2 kT вблизи границ зон или внутри этих зон, то следует пользоваться только функцией распределения Ферми-Дира-ка, а состояние полупроводника становится вырожденным.

Формулы (2.7) и (2.8) являются универсальными, так как приме-нимы для расчета концентраций в любых типах полупроводников: собственном (типа i ) и примесных (типов п и р ). Коэффициенты и следует трактовать как эффективное число состояний, располо-женных на границах зон (уровней и , которые только и входят в формулы). Значения и для кремния и германия составляют примерно 10 19 см -3 .

Формулы (2.7) и (2.8) следует также понимать как отражение взаи-мосвязи между концентрацией (числом носителей) и уровнем Ферми. Если известно значение , то можно вычислить концентрации п и р , соответствующие этому значению . Если же известна концентрация п (или р), то можно вычислить соответствующее ей значение . Фор-мула для в этом случае получается из (2.7) или (2.8), но значение в результате расчета, естественно, должно получиться одинаковым:

(2.9)

Одинаковый результат является следствием имеющейся связи между значениями концентраций п и р , т.е. связи между полным чис-лом носителей в зоне проводимости и валентной зоне. Рассмотрим эту связь.

Используя (2.7) и (2.8), найдем произведение концентраций:

Так как ширина запрещенной зоны

(2.10)

Применим (2.10) для собственного (чистого, беспримесного) по-лупроводника, в котором концентрация электронов и дырок одина-кова
. Получим формулу

(2.11)

Которую можно использовать для расчета концентраций носителей в собственном полупроводнике, не зная положения уровня Ферми:

(2.12)

Или преобразования формулы (2.10) до вида

(2.13)

Смысл этого соотношения состоит в том, что увеличение кон-центрации частиц с одним знаком заряда сопровождается уменьше-нием концентрации частиц с другим знаком. Такая зависимость объ-ясняется тем, что при увеличении, например, концентрации элект-ронов п обязательно пропорционально увеличится и вероятность рекомбинации носителей, в результате чего будет пропорциональ-но убывать концентрация дырок р .

Расчет по формуле (2.12) дает следующие значения : для Ge – 2,4 10 13 см -3 ; для Si – 1,45 10 10 см -3 ; для GaAs – 1,79 10 6 см -3 . Пре-вышение ширины запрещенной зоны кремния по сравнению с гер-манием всего в 1,12/0,66=1,7 раза привело к уменьшению концент-рации собственных носителей приблизительно в 10 3 раз.

^ 2.1.3. Условие электрической нейтральности

Это условие требует, чтобы суммарный заряд любого объема собственного и примесного полупроводников был равен нулю:

(2.14)

Для 1 см 3 собственного полупроводника с концентрациями элек-тронов и дырок

,

Где q – абсолютная величина заряда электрона. Это условие нейт-ральности можно переписать в виде

(2.15)

Это соотношение отражает процесс одновременного образова-ния пар электрон –дырка. Естественно, образование таких пар но-сителей с разными знаками зарядов не нарушает нейтральности.

Для объема 1 см 3 полупроводника n -типа

(2.16)

Где
– концентрация положительных донорных ионов (считаем, что все атомы доноров ионизированы, поэтому одновременно есть и концентрация вводимых нейтральных донорных атомов); ин-декс п

Аналогично для р -полупроводника условие (2.14)

(2.17)

Где
– концентрация отрицательных акцепторных ионов, а индекс р указывает на тип полупроводника.

^ 2.1.4. Концентрация основных и неосновных носителей в примесных полупроводниках

Эти величины, как уже отмечалось, могут быть легко опреде-лены в результате совместного решения уравнений (2.13) и (2.16) или (2.17).

Для n -полупроводника, решив совместно уравнения (2.13) и (2.16), получим

(2.18)

В n -полупроводнике концентрация доноров на несколько поряд-ков больше (>>), поэтому вместо (2.18) можно записать

(2.19)

В n -полупроводнике электроны являются основными носителя-ми, а дырки неосновными, так как >>

Пример. Концентрация доноров в германии = 10 16 см -3 , = 2,4 10 13 см -3 . Концентрация электронов (основных носителей) по формуле (2.19) составит == 10 16 см -3 , концентрация дырок (неосновных носителей) = 5,76·10 26 /10 10 = 5,76·10 10 см -3 .

Аналогично для р -полупроводника из уравнений (2.13) и (2.17) получим

(2.20)

При выполнении условия >>

(2.21)

Где - концентрация основных носителей, a - неосновных носи-телей (>>).

Результаты (2.19) и (2.21) следовало ожидать, так как при ра-бочих температурах практически все примесные атомы ионизиро-ваны. Но тогда и концентрации неосновных носителей и мож-но найти из точных формул (2.18) и (2.20), подставив в них
и
, т.е.

(2.22)

На основании формул (2.22) можно сделать важный вывод, что концентрация неосновных носителей очень сильно зависит от ве-щества. Так как для Si = 1,45·10 10 см -3 , а для Ge = 2,4·10 13 см -3 , то концентрация неосновных носителей, пропорциональная , у Ge будет в (2,4·10 13 /1,45·10 10) 2 3·10 6 раз выше, чем у кремния. Это объясняется различием в ширине запрещенной зоны. Кроме того, концентрации неосновных носителей сильно зависят от температуры, так как от нее по формуле (2.12) экспоненциально зависит .

П
ри некоторой температуре концентрация , сравнивается с концентрацией доноров в n -полупроводнике. Назовем эту тем-пературу максимальной (T m ах ). При Т> T m ах >, т.е. концентра-ция электронов будет определять-ся не примесью, и поэтому теряет смысл термин «основные носители». В результате генерации пар носителей концентрации электро-нов и дырок оказываются одинако-выми, как в собственном полупро-воднике, и с ростом температуры увеличиваются по экспоненциальному закону. Аналогичный процесс происходит при росте темпера-туры в р -полупроводнике.

На рис. 2.3 показана температурная зависимость концентрации электронов в кремнии n -типа. Существует подъем кривой на началь-ном участке от T=0 К до некоторой температуры, при которой закон-чится ионизация доноров. Затем в довольно широком диапазоне температур (включающем комнатную) концентрация равна концент-рации примеси, т.е. электроны являются основными носителями. При высоких температурах (Т > T m ах ) концентрация определяется генерацией пар носителей, т.е. величиной , экспоненциально рас-тущей с повышением температуры.

^ 2.1.5. Положение уровня Ферми в полупроводниках

В собственном полупро-воднике n = р = , поэтому энергия уровня Ферми в нем из

(2.23)

Подставляя в (2.23) из (2.12) и учитывая, что

(2.24)

Таким образом, в собственном полупроводнике уровень Ферми практически на-ходится в середине запрещенной зоны.

Уровень Ферми в n-полупроводнике определяется при

(2.26)

Умножая числитель и знаменатель второго слагаемого на и используя форму-лу (2.23), получаем

(2.27)


Значения концентрации приме-си, при которой положение уровня совпадает с границей зон, называют критическим (
).

^ 2.1.6. Распределение носителей заряда по энергии

Перемножив значения и f ( ε ), получим распределение носителей по энергии в зоне про-водимости (рис. 2.5,в). Что каса-ется валентной зоны, то в соот-ветствии с выражением (2.2) надо умножать на . Все распределения имеют максимум, а затем быстро спадают.

Министерство образования и науки Российской Федерации

Новосибирский государственный технический университет

Расчет параметров полупроводников Методические указания

по выполнению расчетно-графической работы для студентов II курса факультета РЭФ направления 210200 «Проектирование и технология радиоэлектронных средств» и специальностей: 210404 «Многоканальные телекоммуникационные системы», 210402 «Средства связи с подвижными объектами», 210405 «Радиосвязь, радиовещание и телевидение»

Составитель: канд. техн. наук, доц. С.В. Дорогой Рецензент: доц. Н.И. Коржавин,

В работе даны варианты расчетно-графических заданий по дисциплинам

«Физические основы микроэлектроники» и «Физические основы электроники».

Рассмотрены примеры получения аппроксимационных зависимостей основных физических параметров полупроводников, таких как подвижности электронов и дырок при произвольных значениях температуры и концентрации примеси на основании экспериментальных результатов и известного вида зависимостей.

Результаты расчетов, выполненных в среде MathCAD, сравниваются с литературными данными.

Методические указания основаны на наиболее достоверных фактических данных, имеющихся в научной литературе и Интернет источниках.

Работа подготовлена на кафедре КТРС

© Новосибирский государственный технический университет, 2003

Введение

Знание основных физических параметров полупроводников и их зависимостей от различных факторов, например, температуры, необходимо для расчета конкретных характеристик полупроводниковых приборов. Из огромного числа полупроводниковых материалов выбраны 8 полупроводников, имеющих максимальное распространение, соответствующих вариантам РГЗ, а именно:

кремний (Si), германий (Ge), арсенид галлия (GaAs), фосфид галлия (GaP),

антимонид галлия (GaSb), антимонид индия (InSb), арсенид индия (InAs), фосфид индия (InP). Расчет параметров производится для примесных невырожденных полупроводников как для n-, так и для p типов проводимости. Соответствующие концентрации доноров и акцепторов приведены в задании. При решении практических задач часто бывает необходимо получить математическое выражение для произвольно изменяющейся функции по экспериментальным точкам. В общем виде сделать это непросто. Задача существенно упрощается,

если известен вид аппроксимирующей функции. В работе предлагается сделать обработку экспериментальных зависимостей (µn (T), µp (T), µn (Nd ), µp (Na ),)) по известному виду функций и получить соответствующие аппроксимационные зависимости как функции одной переменной. Эти зависимости могут быть использованы как для расчета других параметров полупроводников, например,

электропроводности, так и характеристик элементов полупроводниковых приборов, например, p-n перехода. Также получаемые зависимости допускают проведение над ними обычных математических операций, например,

интегрирование или дифференцирование. Работа выполняется с использованием программы MathCAD-2000 или других.

1. Основные физические параметры полупроводников

К основным физическим параметрам полупроводников, подлежащих определению, относятся:

1. m * dn , m * dp - эффективные массы плотности состояний электронов в зоне

проводимости и дырок в валентной зоне.

2. N C (T) эффективная плотность состояний в зоне проводимости.

3. N V (T) эффективная плотность состояний в валентной зоне.

4. n i (T) собственная концентрация носителей заряда.

5. E g (T) ширина запрещенной зоны полупроводника.

6. n (T, Nd=const), n (T=300 K, Nd ), p (T, Na=const), p (T=300 K, Na )

подвижности электронов и дырок. Концентрации примесей Nd, Naуказаны в варианте. Если не удается найти экспериментальные зависимости при заданных значениях концентрации примеси или температуры, то использовать наиболее близкие данные.

7. i (T) – удельное электрическое сопротивление собственного полупроводника.

8. C -EF . или EF -EV ) в заданном диапазоне температур.

Использовать допущение полной ионизации примесей, полупроводник

невырожденный.

9. Положение уровня Ферми в примесном полупроводнике относительно разрешенных зон (E C -EF ., EF -EV ) при фиксированной температуре (Т=300К) для заданных значений Nd и Na.

10. Изменение положения уровня Ферми в собственном полупроводнике при увеличении температуры относительно середины запрещенной зоны (E i ).

11. Температуру начала собственной проводимости (n i (T)>Nd или pi (T)>Na )).

12. Отношение подвижности электронов к подвижности дырок при

фиксированном значении температуры (Т=300 К) в зависимости от концентрации примеси. Задать концентрации Nd и Na в широком диапазоне, например 1014 см-3

…1019 см-3 .

13. Зависимость удельного электрического сопротивления примесного

соответственно) при постоянной температуре (Т0 =300К). Задать концентрации Nd

и Na как в п.12.

14. Dn (T), Dp (T) коэффициенты диффузии электронов и дырок в зависимости от

температуры

2. Основные формулы и соотношения

Эффективная плотность

2 kTm*

состояний в зоне проводимости

(T ) 2

Эффективная плотность

2 kTm*

(T ) 2

состояний в валентной зоне

Температурная зависимость

Eg T Eg 0

ширины запрещенной зоны

Собственная концентрация

Eg T

носителей заряда в

ni T NC T NV T exp

полупроводнике

Температурная

kT ln

kT ln

зависимость энергии

Температурная зависимость

kT ln

Где E i –

энергии Ферми для

собственного полупроводника

середина запрещенной зоны

Концентрационная

i N imin

i max i min

зависимость подвижности

электронов и дырок

Температурная зависимость

подвижности электронов и

i T Const T ,

Удельное электрическое

сопротивление собственного

qni T

n T p T

полупроводника

Концентрация свободных

электронов в зоне

n T NC (T)exp

проводимости

Концентрация свободных

(T )exp

E F E V

дырок в валентной зоне

n (T ) p (T ) n i (T ) 2

Закон действующих масс

n n (T ) p n (T ) n i (T ) 2 для n-типа

p p (T ) n p (T ) n i (T ) 2 для p-типа

D (T)

Dp (T)

Соотношение Эйнштейна

UT (T)

n (T )

p (T )

Аппроксимацией (приближением) функции f(x) называется нахождение такой функции g(x) (аппроксимирующей функции ) , которая была бы близка заданной. Критерии близости функций f(x) и g(x) могут быть различные.

В том случае, когда приближение строится на дискретном наборе экспериментальных точек, аппроксимацию называют точечной или дискретной.

Экспериментальные данные берутся из литературных источников, например из или из текущей научной периодики.

3. Порядок выполнения работы

1. Скопировать в единый раздел необходимые для расчета физические константы, такие как постоянные Больцмана, Планка, заряд электрона и т.д. из Ресурсного Центра программы MathCAD (Resourse Center→QuickSheets and Reference Tables→Basic Science Reference→Fundamental Physical Constants).

Обратить внимание на наличие размерностей.

2. Выписать значения констант, относящихся к конкретному полупроводнику из таблицы 1, с учетом размерностей, например, ширину запрещенной зоны при Т=0К (Eg0 ). Задать диапазон изменения величин, например, температуры и концентрации доноров (Nd ) и акцепторов (Na ).

Пример 1 Задание диапазонов изменяемых величин с различным шагом.

Температура (T) имеет шаг 1 К, а концентрация доноров (Nd ) – 4 1014 см-3 .

T 0 300 K T 200 K 201 K 400 K

N.d 1 1014 cm 3 5 1014 cm 3 1 1018 cm 3

Напоминаем, что «нижний индекс» переменной Nd , в MathCAD ставится

через точку, а не с помощью кнопки панели Матрицы, это элемент матрицы.

Записать выражение для температурной зависимости ширины запрещенной зоны, согласно уравнению (3). Сделать правую часть выражения сначала безразмерной, поделив T на Кельвин, и присвоить затем размерность электрон-

вольт. Так как в MathCAD нет встроенной единицы измерения «электрон-вольт» ,

то необходимо самим ее определить и присвоить. Результат для Si выглядит так:

Пример 2 Температурная зависимость ширины запрещенной зоны кремния Eg (T),

размерность – электрон-вольт.

q 1.60217653 10 19 coul

E 1.17 eV

A 0.000473

B 636 K

A T2

(300 K) 1.125 eV

3. Определить эффективную массу плотности состояний электронов в зоне проводимости и эффективную массу плотности состояний дырок в валентной зоне. Это можно сделать с помощью формул (1) и (2), если подставить численные значения для Nc или Nv при Т=300 К из таблицы 1 и решить уравнения относительно m * dn и m * dp .

Напоминаем, что эти величины используются исключительно для расчета

NC (T), NV (T). Результат представить в виде: m * dn Const m 0 , где m0 -масса электрона и поместить перед формулами для NC (T), NV (T).

4. Определить собственную концентрацию носителей заряда, построить график ni (T) и вычислить температуру начала собственной проводимости.

Таблица 1

Базовые физические параметры полупроводников (Т=300К) http://www.ioffe.spb.ru/

Полупроводник

n-тип, Nd, см-3

5*1017

8*1017

2*1017

8*1016

5*1016

9*1015

2*1016

5*1016

p-тип, Na, см-3

2*1016

5*1016

5*1016

5*1015

5*1017

2*1017

5*1017

5*1017

Eg0 , эВ

Nc, см-3

3.2*1019

1.0*1019

4.7*1017

1.8*1019

2.1*1017

4.2*1016

8.7*1016

5.7*1017

Nv, см-3

1.8*1019

5.0*1018

9.0*1018

1.9*1019

1.8*1019

7.3*1018

6.6*1018

1.1*1019

ni , см-3

1*1010

2.0*1013

2.1*106

1.5*1012

2*1016

1*1015

1.3*107

ρi , Ом·см

3.2*105

3.3*108

8*1015

4*10-3

8.6*107

μn , см2 /(В*с)

5. Используя экспериментальные результаты из работ , получить аппроксимационное выражения для подвижностей электронов и дырок в зависимости от температуры при заданном значении концентрации примеси и отдельно от концентрации примеси в диапазоне 1014 …1019 см-3 при T=const. При Т=300 К практически во всех исследованных полупроводниках температурную зависимость можно описать уравнением (6). В некоторых случаях вместо функции Find можно использовать Minerr. Построить совместно экспериментальные и аппроксимационные зависимости μn (Т), μp (Т), μn (Nd ), μp (Na ).

Пример 3 Получение температурной зависимости подвижности дырок в Si из уравнения (7) с помощью блока Given - Find. Размерность подвижности задана в см2 /(В·с). Знак равенства в уравнениях должен быть логический, а число уравнений в блоке Given – Find соответствовать числу неизвестных.

10 3.802

Const 101.918

10 2.33

Const 102.639

5.222 107

p (T)

(начальные условия)

(блок решения системы уравнений (Given-Find))

(численные значения неизвестных величин)

(искомое аппраксимационное уравнение)

Результат аппроксимации в сравнении с экспериментом показан на рис.1

(Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!


Введение

Физические процессы в полупроводниках и их свойства

1 Собственные полупроводники

2 Электронный полупроводник

3 Дырочный полупроводник

4 Энергетические диаграммы полупроводников

5 Основные и неосновные носители заряда

6 Температурная зависимость концентрации носителей заряда

7 Донорные и акцепторные полупроводники

8 Зависимость концентрации электронов от энергии уровня Ферми

9 Положение уровня Ферми и концентрация свободных носителей заряда в собственных полупроводниках

Вычисление температурных зависимостей электрофизических параметров полупроводников

1 Приближённый расчёт зависимости концентрации дырок от температуры

1.1 Вычисление средней температуры

1.2 Вычисление эффективной массы электрона и дырки

1.3 Вычисление эффективной плотности состояний в валентной зоне и зоне проводимости

1.4 Расчёт температурыи

1.5 Область низких температур

1.6 Область средних температур

1.7 Область высоких температур

2 Аналитический расчёт зависимости концентрации свободных носителей заряда и положения уровня Ферми от температуры

2.1 Нахождение точных значенийи

2.2 Область низких температур (точные значения)

2.3 Область средних температур (точные значения)

2.4 Область высоких температур (точные значения)

Заключение

Список используемых источников

Приложение А Программа расчёта

Приложение В Графики зависимостей

Реферат Пояснительная записка содержит 54 страниц машинописного текста, включает 2 приложения, 14 рисунков, список использованных источников из 10 наименований.

Ключевые слова: собственный полупроводник, полупроводник акцепторного типа, эффективная масса, соотношение действующих масс, эффективная плотность состояний, уровень Ферми, ширина запрещённой зоны, носители заряда, концентрация носителей заряда, акцепторная примесь, энергия ионизации примеси, область истощения примеси, область собственной электропроводности, область собственной проводимости, область слабой ионизации, концентрация дырок, точные значения.

Цель работы: рассчитать температурную зависимость концентрации свободных носителей заряда в полупроводнике акцепторного типа, а так же построить график этой зависимости в координатах: ln n = F(1/T). Определить и построить графически зависимость энергии уровня Ферми от температуры, и произвести расчет температур перехода к собственной проводимости и истощения примеси.

Задачи: использовать данную курсовую работу как основу фундамента знаний о физике полупроводников, а так же развить свой технический кругозор для улучшения своей профессиональной пригодности.

Измерение температурной зависимости проводимости

1.1. Включить установку в сеть 220 В;

1.2. Соответствующим тумблером осуществить выбор исследуемого образца;

1.3. Ознакомиться с градуировкой милливольтметра;

1.4. При комнатной температуре произвести измерения тока, протекающего между токовыми зондами, и падения напряжения между измерительными потенциальными зондами;

1.6. Включить нагрев образца соответствующим тумблером и выполнить измерения через каждые 10°С вплоть до Т= 190°С;

Результаты измерений тока I через образец, температуры образца Т и напряжения U занести в табл. 2.1.

Т а б л и ц а 2.1

2.1. Произведя соответствующие расчеты, построить зависимость ln γ = f(1/Т) ;

2.2. Определить ширину запрещенной зоны исследуемого материала;

2.3. Высказать предположение и обосновать его: какой из известных полупроводниковых материалов исследовался в данной работе;

2.4. Сделать вывод о доминирующем механизме рассеяния в области истощения примесей, построив соответствующий участок кривой в координатах lnγ=f( lnT).

Справочные данные для проведения расчетов энергетических параметров полупроводника приведены в табл. 2.2 и 2.3.

Т а б л и ц а 2.2

Т а б л и ц а 2. 3

Отчет должен включать:

1. Цель работы.

2. Схему установки.

3. Расчетные формулы и соотношения, используемые в работе.

4. Таблицу с измеренными и рассчитанными величинами.

5. Примеры расчета по соответствующим формулам.

6. Графики зависимостей lnγ =f(1/Т) и lnγ=f( lnT) .

7. Расчет значений ∆W и χ.

8. Величину Т i (и, если возможно, Т s ).

9. Расчет N Д(А) по величине Т i .

10. Выводы по полученным данным.



Контрольные вопросы

1. Какие носители заряда присутствуют в полупроводниках?

2. Каков преимущественный вид носителей заряда в случае донорных и в случае акцепторных примесей?

3. Как Вы понимаете термин «зона проводимости»?

4. В каких пределах лежит ширина запрещенной зоны полупроводников?

5. Чем определяется температурная зависимость электропроводности полупроводника?

6. Почему собственная проводимость в полупроводнике появляется при более высоких температурах, чем примесная?

7. Почему именно зависимость концентрации свободных носителей от температуры определяет характер зависимости проводимости полупроводника от температуры?

8. Какие существуют виды рассеяния носителей заряда?

9. В чем состоит особенность четырехзондового метода измерения электропроводности?

10. Какие энергетические параметры полупроводника можно определить по температурной зависимости удельной проводимости?

11. Как определить концентрацию примесей в полупроводнике?

12. Как определить тип рассеяния носителей заряда?

Изобретение относится к технике контроля полупроводников. Наиболее целесообразно использовать предлагаемое изобретение для бесконтактного, оперативного контроля параметров глубоких уровней (ГУ), поверхностных состояний (ПС), поверхностного потенциала (заряда), а также времени жизни неосновных носителей заряда. Сущность: возбуждают поверхностную фотоЭДС прямоугольными импульсами электромагнитного излучения, интенсивность которых изменяется от нуля до значений, обеспечивающих режим насыщения. Излучение попадает на поверхность полупроводника через прозрачный емкостной электрод. Амплитуда и форма импульса поверхностной фотоЭДС регистрируется с помощью этого электрода и измерительной цепи. Измерения проводят при нескольких различных интенсивностях импульсов электромагнитного излучения. По зарегистрированным характеристикам рассчитывают параметры релаксационных процессов, что позволяет определить электрофизические параметры полупроводника - концентрацию, энергию и сечение захвата ГУ и ПС, а также поверхностный заряд, поверхностный потенциал, время жизни неосновных носителей заряда. 2 з.п. ф-лы, 1 табл., 7 ил.

Рисунки к патенту РФ 2330300

Изобретение относится к технике контроля полупроводников. Наиболее целесообразно использовать предлагаемое изобретение для контроля параметров глубоких уровней (ГУ), поверхностных состояний (ПС), поверхностного потенциала (заряда), а также времени жизни неосновных носителей заряда.

Известен ряд способов определения параметров полупроводников. Вольт-фарадный способ основан на создании на контролируемой поверхности полупроводника структуры металл - диэлектрик - полупроводник (МДП), определении зависимости емкости такой структуры от напряжения, приложенного между полупроводником и металлом, и анализе этой зависимости . Способ позволяет определить ряд параметров полупроводника - поверхностный потенциал (заряд), плотность ПС, объемное генерационное время носителей заряда, концентрацию легирующей примеси. Недостатком способа является необходимость создания такой структуры, а также сравнительная сложность проведения измерений.

Известен также способ определения времени жизни неосновных носителей заряда, сущность которого состоит в определении стационарного значения поверхностной фотоЭДС (ПФЭ) при нескольких различных значениях длины волны электромагнитного излучения, облучающего поверхность контролируемой полупроводниковой пластины. При этом используется периодическая модуляция интенсивности электромагнитного излучения, а стационарное значение поверхностной фотоЭДС определяется по амплитуде основной гармоники сигнала этой ЭДС, снимаемого с помощью емкостного зонда . Недостатком способа является его сложность (необходимо проводить измерения на нескольких (до 10) длинах волны). Следует отметить, что при заданных форме импульсов электромагнитного излучения и частоте их следования форма сигнала поверхностной фотоЭДС зависит также и от интенсивности импульса электромагнитного излучения. Это вносит дополнительную погрешность и ограничивает область применения метода.

Наиболее близок к предлагаемому изобретению способ определения электрофизических параметров полупроводников согласно патенту РФ №2080611 .

При использовании этого способа контролируемую полупроводниковую пластину облучают импульсами электромагнитного излучения. Облучение осуществляют через прозрачный емкостной электрод, представляющий собой прозрачную проводящую прокладку, расположенную параллельно поверхности полупроводниковой пластины. Результатом облучения является генерация неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника. Регистрация этой разности потенциалов осуществляется путем определения амплитуды и формы импульсов напряжения между емкостным электродом и объемом полупроводника. Измерения проводятся в диапазоне температур. По амплитуде и форме импульсов напряжения определяются параметры релаксационных процессов установления и рассасывания неравновесной разности потенциалов, а по зависимости параметров этих процессов от температуры вычисляют электрофизические параметры полупроводника. Достоинством этого способа является обеспечение неразрушающего контроля параметров ГУ полупроводника с достаточно высокой чувствительностью (до 10 8 ÷10 9 см -3) и высоким разрешением (лучше 10 -2 эВ) без каких-либо дополнительных технологических операций. Недостатком способа является то, что для определения параметров полупроводника необходимо охлаждение и нагревание полупроводника. Это делает невозможным оперативный контроль в режиме in line. Кроме того, возможно определение лишь параметров ГУ.

Целью изобретения является обеспечение оперативного контроля параметров полупроводника без нагрева или охлаждения контролируемых образцов, а также получение возможности контроля параметров ПС, поверхностного потенциала, поверхностного заряда и объемного времени жизни неосновных носителей заряда. Указанная цель достигается тем, что в известном способе определения электрофизических параметров полупроводников, включающем создание неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника путем облучения полупроводниковой пластины, расположенной на проводящем столике-подставке, прямоугольными импульсами электромагнитного излучения, энергия кванта которого выше энергетического порога генерации свободных носителей заряда в полупроводниковой пластине, через емкостной электрод, представляющий из себя прозрачную проводящую обкладку, расположенную параллельно поверхности полупроводниковой пластины, регистрацию упомянутой неравновесной разности потенциалов путем определения амплитуды и формы импульсов напряжения между емкостным электродом и столиком-подставкой, расчете параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на упомянутом барьерном переходе по амплитуде и форме напряжения на упомянутом емкостном электроде и вычислении по параметрам релаксационных процессов электрофизических параметров полупроводника, длительность импульсов электромагнитного излучения устанавливают больше времени установления неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника. Промежуток времени между импульсами излучения устанавливают больше времени рассасывания этой неравновесной разности потенциалов. Регистрацию напряжения на упомянутом емкостном электроде осуществляют путем определения амплитуды и формы импульсов напряжения посредством измерительной цепи, постоянная времени которой, равная произведению емкости между емкостным электродом и полупроводниковой пластиной на входное сопротивление этой измерительной цепи, больше времени как установления, так и рассасывания упомянутой неравновесной разности потенциалов. Расчет параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника производят при нескольких различных интенсивностях импульсов электромагнитного излучения, изменяющихся от минимальных значений, при которых еще возможна регистрация неравновесной разности потенциалов на барьерном переходе, до значений, при которых амплитуда сигнала с емкостного электрода не зависит от интенсивности импульса излучения. Параметры поверхностных состояний, параметры глубоких уровней и величину поверхностного потенциала рассчитывают по зависимости параметров релаксационных процессов от интенсивности импульсов излучения. Зависимости параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника от интенсивности импульса излучения целесообразно определять при создании между емкостным электродом и объемом полупроводника разности электрического потенциала положительной или отрицательной полярности. Это дает возможность определить параметры ПС и ГУ в более широком диапазоне их значений. Кроме того, определение параметров релаксационных процессов целесообразно определять при двух или больше длинах волны электромагнитного излучения. Это дает возможность определить объемное время жизни неосновных носителей заряда, которое рассчитывают по зависимостям параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника, как от интенсивности, так и от длины волны импульса электромагнитного излучения.

Предлагаемый способ определения электрофизических параметров полупроводников является дальнейшим развитием способа, описанного в . Основной отличительной особенностью предлагаемого способа является то, что определение неравновесной разности потенциалов на барьерном переходе проводится в диапазоне изменений интенсивности излучения от нуля до такого значения, при котором наступает насыщение зависимости амплитуды сигнала от интенсивности излучения. Математическая обработка результатов этих измерений позволяет определить параметры ГУ, ПС, а также поверхностный заряд при комнатной температуре. Возможно проведение измерений и при других температурах.

Согласно второму варианту изобретения при измерениях параметров релаксационных процессов на емкостной электрод подается постоянное электрическое напряжение. Это дает возможность определять параметры ПС и ГУ, энергия активизации которых лежит во всем диапазоне запрещенной энергетической зоны.

Согласно третьему варианту изобретения измерения проводятся при двух или более длинах волны электромагнитного излучения, что дает возможность определить объемное время жизни неосновных носителей заряда. Отметим, что для определения точного значения этого параметра необходимо учитывать зависимость амплитуды и формы сигнала поверхностной фотоЭДС как от длины волны, так и от интенсивности электромагнитного излучения.

Объединение трех технических решений в одну заявку связано с тем, что все они решают задачу определения электрофизических параметров полупроводника на основе одного принципа - учета не только амплитуды, но и формы сигнала поверхностной фотоЭДС, а также зависимости сигнала ПФЭ от интенсивности импульсов электромагнитного излучения.

В дальнейшем поверхностную фотоЭДС, генерируемую прямоугольными импульсами излучения, будем называть импульсной поверхностной фотоЭДС (ИПФЭ).

На фиг.1 приведена функциональная блок-схема устройства, реализующего предлагаемый способ, на фиг.2 - эквивалентная схема измерений, на фиг.3 - энергетические диаграммы барьерного перехода поверхность - объем полупроводника. На фиг.4-8 приведены результаты измерений поверхностной фотоЭДС (ПФЭ) на пластине кремния КЭФ 4,5. На фиг.4 - графики сигнала ПФЭ при изменении амплитуды сигнала от 0 до 0,24 В, на фиг.5 нормированные графики тех же процессов. На фиг.6 и 7 приведены графики приращений заднего фронта сигнала ИПФЭ.

Устройство, реализующее предлагаемый способ, состоит из столика-подставки 1, на котором помещается контролируемая пластина 2. Этот столик выполнен из проводящего материала. Пластина 2 облучается электромагнитным излучением через прозрачный проводящий электрод 3. Источником излучения является лазерный светодиод 5, возбуждаемый генератором прямоугольных импульсов тока регулируемой амплитуды 4. Электромагнитное излучение от светодиода 5 попадает в световод 6 и далее через электрод 3 на контролируемую полупроводниковую пластину 2. Электрод 3 подсоединен к источнику постоянного напряжения 10. Сигнал поверхностной фотоЭДС снимается электродом 3 и подается через разделительный конденсатор 9 на вход высокоомного измерительного усилителя 7 и далее на регистрирующее устройство 8. В качестве регистрирующего устройства целесообразно использовать цифровой осциллограф.

На фиг.3 приведены энергетические диаграммы барьерного перехода поверхность - объем полупроводника. На этой фиг. Е - энергия, q - заряд электрона, V k - барьерная разность потенциалов перехода поверхность - объем, V m - значение V в режиме насыщения, Е c , Е v - границы зоны проводимости и валентной зоны, F - уровень Ферми, F e - квазиуровень Ферми для электронов, F h - квазиуровень Ферми для дырок, Е 0 - энергетический уровень (ГУ), h 1 , h 2 , h 3 - координаты границы области пространственного заряда, w 1 , w 2 - значения продольной координаты при Е 0 =F и при Е 0 =F e . Диаграмма "а" соответствует равновесному состоянию, "б" - стационарному неравновесному состоянию, когда электромагнитное излучение генерирует фотоЭДС величиной Гц, "в" соответствует случаю, когда q·V=q·V k -Е 0 ; "г" соответствует насыщению, когда зоны спрямлены и фотоЭДС имеет максимальное значение, не зависящее от интенсивности излучения. Диапазоны значений энергий ПС, заполненных электронами, отмечены кружками.

На фиг.4 приведены записи сигнала ИПФЭ для шайбы кремния КЭФ 4,5 диаметром 100 мм и толщиной 1,5 мм при различной интенсивности прямоугольных импульсов излучения с длиной волны 0,86 мкм. Длительность импульса - 1,2 мсек.

На фиг.5 приведены те же сигналы, нормированные таким образом, что в момент окончания импульса излучения значение нормированного сигнала ИПФЭ равнялось 1.

На фиг.6 приведены графики приращений заднего фронта сигнала ИПФЭ; непрерывная линия - амплитуда менялась от 0 до ˜20 мВ; мелкий пунктир - от 20 до ˜30 мВ и крупный пунктир - от 30 до ˜40 мВ.

На фиг.7 приведены аналогичные графики для приращений от 70 до 80 мВ - непрерывная линия, от 80 до 90 мВ - мелкий пунктир и от 90 до 100 мВ - крупный пунктир.

Способ реализуется следующим образом.

Рассмотрим случай, когда однородная пластина полупроводника n типа облучается импульсами электромагнитного излучения длительностью Т 0 и интенсивностью I 0 , а напряжение источника питания 10 равно нулю. При включении излучения происходит генерация неравновесных носителей заряда, их диффузия и дрейф под действием электрического поля барьерного перехода поверхность - объем полупроводника. Это приводит к снижению разности потенциалов барьерного перехода и возникновению поверхностной фотоЭДС; при этом происходит захват электронов на те ГУ и ПС, которые оказались ниже квазиуровня Ферми для электронов. Процессами, связанными с генерацией ЭДС Дембера, пренебрежем. Значение выберем Т 0 достаточным для установления стационарного состояния. По окончании импульса излучения происходит рассасывание неравновесных носителей заряда и опустошение ГУ и ПС, находившихся выше уровня Ферми. Эквивалентная схема измерения поверхностной фотоЭДС V приведена на фиг.2. Величины емкости емкостного электрода С и входного сопротивления измерительного усилителя R in выберем такими, чтобы постоянная времени измерительной цепи, равная произведению R in ·(С+С 0), была больше как времени установления стационарного значения фотоЭДС от 0 до V 0 , так и времени рассасывания от V 0 до 0. Измерения поверхностной фотоЭДС производятся либо в режиме одиночных импульсов излучения, либо с достаточно низкой частотой повторения, обеспечивающей полное рассасывание фотоЭДС от V 0 до 0.

Для определения значения поверхностного заряда Q S увеличим интенсивность излучения I 0 до насыщения, т.е. такого значения, при котором V 0 не зависит от I 0 . Энергетическая диаграмма для такого режима приведена на фиг.3г. Предельное значение V m соответствует поверхностному потенциальному барьеру V k . Поверхностный заряд Q S определяется при этом соотношением

где ,

n i - равновесная концентрация носителей заряда в собственном полупроводнике,

Относительная диэлектрическая проницаемость полупроводника,

0 - диэлектрическая проницаемость вакуума,

k - постоянная Больцмана,

Т - абсолютная температура,

n 0 , р 0 - полные объемные концентрации электронов и дырок в условиях термодинамического равновесия.

Для определения параметров ГУ и ПС необходимо определить параметры релаксационных процессов установления и рассасывания ИПФЭ при различных интенсивностях электромагнитного излучения, изменяющихся от нуля до насыщения. На фиг.4 приведены записи таких процессов для шайбы кремния n типа. Интенсивность импульса излучения изменялась таким образом, чтобы значение поверхностной фотоЭДС в установившемся режиме в конце импульса излучения изменялась от ˜0,03 до ˜0,32 В. На фиг.5 приведены графики тех же релаксационных процессов, нормированные таким образом, чтобы в конце импульса излучения их значения совпадали. Как видно при различных интенсивностях излучения, существенно менялась не только амплитуда, но и форма импульсов поверхностной фотоЭДС.

Далее ограничимся рассмотрением релаксационных процессов рассасывания ПФЭ. Кроме того, будем рассматривать случай обедненного слоя пространственного заряда. Задний фронт ИПФЭ будем представлять как сумму экспонент. При этом наиболее быстрый процесс (порядка единиц - десятков микросекунд) соответствует рассасыванию неравновесных носителей заряда (ННЗ); обозначим через 0 постоянную времени этого процесса.

Рассмотрим сначала случай без ГУ. Интервал энергий на энергетической диаграмме при x=0 от дна зоны проводимости до уровня Ферми разобьем на N более мелких интервалов шириной E каждый. Средняя энергия ПС на каждом из этих интервалов равна

.

Здесь i - номер интервала (отсчет идет от уровня Ферми). Релаксационный процесс рассасывания ПФЭ при i=1, когда , описывается соотношением

В случае i-го интервала

Здесь А 0i - амплитуда релаксационного процесса рассасывания ННЗ; А sj , sj - амплитуда и постоянная времени релаксационного процесса опустошения на j-ом интервале энергии. Отметим, что V i (0)=V 0 . Очевидно, что

Соотношения (2)-(4) являются приближенными, полученными в предположении, что рассасывание неравновесных носителей заряда, а также опустошение ПС происходит по экспоненциальной зависимости.

Обозначим через N si среднюю плотность ПС на i-ом интервале (т.е. среднее число ПС, приходящихся на единицу освещенной площади полупроводника и на единицу диапазона энергии). Тогда

где С si - дифференциальная емкость пространственного заряда, соответствующая i-ому интервалу (отнесенная к единице площади). Величина С si определяется соотношением

В соотношении (6)

Средняя плотность ПС, соответствующая энергии Е i ,

Для определения N si необходимо произвести запись сигналов заднего фронта ПФЭ V i+1 и V i , соответствующих значениям энергии Е i+1 и Е i , рассчитать разность V i+1 -V i , разложить эту разность на экспоненты и определить А si . Значение С si может быть рассчитано по значению V k . Сечение захвата ПС, соответствующее энергии Е i - si , может быть рассчитано из соотношения :

где - средняя тепловая скорость электронов; N 0 - эффективная плотность состояний в зоне проводимости полупроводника.

Отметим, что постоянные времени релаксационных процессов, связанных с перезарядкой ПС - si , зависят от энергии ПС; при приближении энергии ПС к дну зоны проводимости они уменьшаются. Это приводит к увеличению суммарной длительности процесса рассасывания ПФЭ при уменьшении амплитуды ПФЭ (см. фиг.5, 6).

где А li и l - амплитуда релаксационного процесса опустошения ГУ и его постоянная времени.

Релаксационные процессы, связанные с ГУ, не меняют постоянной времени с изменением интенсивности импульса излучения. Это позволяет отличить их от релаксационных процессов, связанных с ПС. Вместе с тем, начиная с некоторого значения i, когда E i >(qV k -Е 0) и А li =А li+1 , в соотношении (4") исчезает слагаемое с экспонентой е -t/ l . Это может быть использовано для определения значения Е 0 .

Отметим, что при увеличении интенсивности излучения от нуля до насыщения постоянная времени релаксационного процесса рассасывания ННЗ остается неизменной.

Обозначим через Q li величину заряда рассасывания с ГУ, отнесенную к единице площади освещенной поверхности полупроводника. Амплитуда А li связана с Q l1 соотношением:

С другой стороны

где N l - объемная концентрация ГУ. В показано, что w 2 -w 1 =h 2 -h 1 . В случае обедненного слоя пространственного заряда электростатический потенциал изменяется по параболической зависимости (как и в случае барьера Шоттки). Для полупроводника n типа

Подставив (11) и (12) в (10) и (10) в (9) получим

Соотношение (13) позволяет определить концентрацию ГУ. Сечение захвата ГУ - l может быть рассчитано при известных Е 0 и l из соотношения :

где g - коэффициент вырождения ГУ.

Таким образом, определив параметры релаксационных процессов ИПФЭ при изменении интенсивности излучения от нуля до насыщения, можно определить следующие электрофизические параметры полупроводника: поверхностный потенциал V k , поверхностный заряд Q s , плотность N si и сечение захвата Si ПС, а также концентрацию N l , энергию E 0 и сечение захвата l ГУ.

В случае двух и более ГУ в соотношениях (2"), (3") и (4") появятся дополнительные экспоненты с постоянной времени, не зависящей от интенсивности излучения, однако алгоритм определения параметров ГУ и ПС существенно не изменится.

Выше был рассмотрен случай, когда на емкостной электрод от источника напряжения 10 подавалось нулевое напряжение, а поверхностный потенциал определялся лишь свойствами поверхности полупроводника. При подаче напряжения от источника 10 положительной или отрицательной полярности на поверхности полупроводника наводится дополнительный заряд, а энергетическая диаграмма смещается вниз или вверх. Это дает возможность определить параметры ПС и ГУ в большем диапазоне энергий во всей запрещенной зоне.

Рассмотрим далее алгоритм определения объемного времени жизни ННЗ mc . Как известно , mc связан с диффузной длиной волны L p . Для расчета этого параметра необходимо определить зависимости сигнала ИПФЭ от интенсивности импульса излучения, по крайней мере, при двух значениях длины волны. Затем следует подобрать два значения интенсивности излучения I 01 и I 02 , соответствующих двум длинам волны 1 и 2 , при которых стационарные значения ИПФЭ V 01 и V 02 равны между собой. Диффузная длина определяется выражением :

где 1 =с/ 1 ; 2 =c/ 2 ; 1 и 2 - коэффициенты поглощения электромагнитного излучения на длине волны 1 и 2 ; h - постоянная Планка, с - скорость света в вакууме.

Объемное время жизни ННЗ определяется соотношением:

где D - коэффициент диффузии.

Отметим, что анализ зависимости амплитуды и формы сигнала ИПФЭ от интенсивности излучения позволит оптимизировать значения I 01 и I 02 , обеспечивающие наименьшую погрешность определения mc .

В качестве примера приведем результаты исследования предлагаемым способом шайбы кремния КЭФ 4,5 диаметром 100 мм и толщиной 700 мкм. На фиг.4 приведены записи ИПФЭ на этой шайбе при длительности импульса излучения 1 мс, длине волны 0,87 мкм и мощность источника излучения ˜200 мВт. Диаметр облучаемой области составлял ˜3 мм. Постоянная времени измерительной цепи равнялась 0,3 с. На фиг.5 приведены нормированные графики ИПФЭ. Нормировка выполнена таким образом, что начала спада графиков импульса поверхностной фотоЭДС совпадают. Видно, что форма импульса существенно зависит от интенсивности излучения. При ее увеличении крутизна, как переднего, так и заднего фронтов увеличивается, что свидетельствует об увеличении вклада более быстрых релаксационных процессов. Поверхностный потенциал исследуемой шайбы равнялся 0,24 В, что соответствует поверхностному заряду Q S =2.9·10 -7 К/см 2 (1,8·10 12 заряженных частиц на кв.см).

На фиг.7 приведены графики приращений заднего фронта ИПФЭ при увеличении амплитуды сигнала от 0 до ˜20 мВ - непрерывная линия, от 20 до 30 мВ - мелкий пунктир, от 30 до 40 мВ крупный пунктир; на фиг.8 такие же графики при увеличении амплитуды сигнала от 70 до 80 мВ - непрерывная линия, от 80 до 90 мВ - мелкий пунктир, от 90 до 100 мВ - крупный пунктир. Обработка результатов измерений состояла в разложении графиков приращений заднего фронта сигнала ИПФЭ на экспоненты по стандартной программе нелинейной регрессии. Результаты расчетов приведены в таблице 1. В этой таблице Е - середина диапазона энергий, для которого производился расчет. Полученные в результате расчетов экспоненты разделены на четыре группы. В первую группу входят экспоненты с постоянной времени не больше 10 мкс. Это дает основания связать их с процессами рассасывания неравновесных носителей заряда. Во вторую группу входят экспоненты с постоянной времени порядка нескольких десятков мкс, в третью - несколько сотен мкс и в четвертую - порядка единиц мс. Эти три группы экспонент вероятнее всего связаны с опустошением ПС, лежащих в диапазоне энергий от 0 до 0,24 эВ. Отметим, что одной и той же энергии соответствует несколько экспонент с существенно различными постоянными времени. Это свидетельствует о том, что одной и той же энергии соответствуют ПС с различными сечениями захвата, т.е. различной физической природы.

Таблица 1
Е, мэВ А 1 , мВ 1 , мкс А 2 , мВ 2 , мкс 2 ×10 20 , см 2 N S2 ×10 12 , см -2 ·В -1 А 3 , мВ 3 , мкс 3 ×10 20 , см 2 N S3 ×10 -12 , см -2 ·B -1 А 4 , мВ 4 , мс 4 ×10 20 , см 2 N S3 ×10 -12 , см -2 ·В -1
10,5 - - 2,2 23 52 3 19 360 3,3 26,5 - - - -
30,4 - - 1,9 17 33 4,05 9,6 210 2,7 20,2 6,6 1,9 0,29 13,9
49,5 2 2,1 5,6 47 5,6 7,87 12 290 0,91 16,8 - - - -
70,4 4 9,8 5,3 34 3,5 4,32 13 340 0,35 10,8 - - - -
92,1 5,3 2,2 4,6 27 1,9 2,64 6,5 140 0,36 3,71 7,2 0,7 0,076 4,1
112 - - 3 39 0,61 1,32 9,5 270 0,09 4,15 - - - -
128 1,4 6,6 - - - - 4,2 110 0,11 1,89 4,9 0,5 0,024 2,12
145 6,6 2,2 4,9 38 0,17 1,02 - - - - 8,6 0,7 0,01 1,79
167 - - - - - - - - - - - - - -
187 12 2,1 - - - - 2,6 100 0,013 0,3 7,7 0,8 0,002 0,87
209 11 4,6 - - - - - - - - 12 0,8 0,007 0,76
228 22 6 - - - - - - - - - - - -

Литература

1. Павлов Л.П. Методы измерения параметров полупроводниковых материалов. М.: Высшая школа, 1987. 239 с.

2. ASTM Standard F 391-96. Standard Test Methods for Minority Carrier Diffusion Length in Extrinsic Semiconductors by Measurement of Steady-State Surface Photovoltage.

3. Русаков Н.В., Кравченко Л.Н., Подшивалов В.Н. Способ определения электрофизических параметров полупроводников. Патент РФ №2080611.

4. Ржанов А.В. Электронные процессы на поверхности полупроводников. М.: Наука, 1971, 480 с.

5. Берман Л.С., Лебедев А.А. Емкостная спектроскопия глубоких центров в полупроводниках. - Л.: Наука, Ленинградское отделение, 1981.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ определения электрофизических параметров полупроводников, включающий создание неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника путем облучения полупроводниковой пластины, расположенной на токопроводящем столике-подставке, прямоугольными импульсами электромагнитного излучения, энергия кванта которого выше энергетического порога генерации свободных носителей заряда в полупроводниковой пластине, через емкостной электрод, представляющей из себя прозрачную проводящую обкладку, расположенную параллельно поверхности полупроводниковой пластины, регистрацию упомянутой неравновесной разности потенциалов путем определения амплитуды и формы импульсов напряжения между емкостным электродом и упомянутым столиком-подставкой, расчете параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на упомянутом барьерном переходе по амплитуде и форме импульсов напряжения на упомянутом емкостном электроде и вычислении по параметрам релаксационных процессов электрофизических параметров полупроводника, отличающийся тем, что длительность импульсов электромагнитного излучения устанавливают больше времени установления неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника, а промежуток времени между импульсами излучения устанавливают больше времени рассасывания этой неравновесной разности потенциалов, при этом регистрацию напряжения на упомянутом емкостном электроде осуществляют путем определения амплитуды и формы импульсов напряжения посредством измерительной цепи, постоянная времени которой, равная произведению емкости между емкостным электродом и полупроводниковой пластиной на входное сопротивление этой измерительной цепи, больше времени как установления, так и рассасывания упомянутой неравновесной разности потенциалов, регистрацию неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника и расчет параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника производят при нескольких различных интенсивностях импульсов электромагнитного излучения, увеличивающихся от минимальных значений, при которых еще возможна регистрация неравновесной разности потенциалов на барьерном переходе, до, по крайней мере, таких значений, при которых можно уверенно зарегистрировать, что увеличение амплитуды напряжения между емкостным электродом и столиком-подставкой при увеличении интенсивности излучения на фиксированную величину меньше, чем амплитуда сигнала, соответствующая интенсивности излучения, численно равной этой фиксированной величине, а параметры поверхностных состояний, параметры глубоких уровней и величину поверхностного потенциала рассчитывают по зависимости параметров релаксационных процессов от интенсивности импульсов излучения.

2. Способ по п.1, отличающийся тем, что параметры релаксационных процессов установления и рассасывания неравновесной разности потенциалов между объемом и поверхностью полупроводника определяют при создании между емкостным электродом и столиком-подставкой разности электрических потенциалов, а параметры глубоких уровней и поверхностных состояний рассчитывают по зависимостям релаксационных процессов от интенсивности импульсов излучения, а также по полярности и величине упомянутой разности потенциалов между емкостным электродом и столиком-подставкой.

3. Способ по п.1, отличающийся тем, что зависимости параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника от интенсивности импульса излучения определяют при двух или больше длинах волны электромагнитного излучения, а объемное время жизни неосновных носителей заряда рассчитывают по зависимостям параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника, как от интенсивности импульса электромагнитного излучения, так и от длины волны этого излучения.