Эффект комптона и его элементарная теория. Эффект Комптона: краеугольный камень квантовой механики Формула комптона после рассеивания

КОМПТОНА ЭФФЕКТ (комптон-эффект, комптонов-ское рассеяние) - рассеяние эл--магн. волны на свободном электроне, сопровождающееся уменьшением частоты. Эффект наблюдается для больших частот рассеиваемого эл--магн. излучения (в рентг. области и выше). Он проявлялся уже в первых опытах по рассеянию рснтг; лучей на свободных электронах, но впервые с требуёмой тщательностью был изучен А. Комп-тоном (A. Compton) в 1922-23. Исторически К. э. явился одним из гл. свидетельств в пользу корпускулярной природы эл--магн. излучения (в частности, света). С точки зрения классич. электродинамики рассеяние с изменением частоты невозможно.

Элементарная теория эффекта была дана А. Комп-тоном и независимо от него П. Дебаем (P. Debye) на основе представления о том, что рентг. излучение состоит из фотонов .Для объяснения эффекта приходилось предположить, что фотон обладает как энергией , так и импульсом (здесь v и - частота и длина волны света, п - единичный вектор в направлении распространения волны).

Комптон рассмотрел упругое рассеяние фотона на свободном покоящемся электроне (что является хорошим приближением для рассеяния фотонов рентг. лучей на атомных электронах лёгких атомов). При рассеянии фотон передаёт электрону часть энергии и импульса, что соответствует уменьшению частоты (увеличению длины волны) рассеиваемого света. Из законов сохранения энергии и импульса он получил ф-лу для сдвига длины волны:

где - длины волн до и после рассеяния, - угол рассеяния, m е - масса электрона. Параметр наз. комптоновской длиной волны электрона и равен 2,4*10 -10 см. Из кинематики процесса легко также определить энергию и импульс электрона отдачи.

Поскольку ф-ла (*) основана только на кинематпч. соображениях, она оказывается справедливой и в точной теории. Из неё следует, что относит. изменение длины волны велико только для коротких длин волн, когда

Данная Комптоном упрощённая теория эффекта не позволяет определить все характеристики компто-новского рассеяния, в частности зависимость интенсивности рассеяния от . Точная релятивистская теория К. э. была сформулирована в рамках квантовой электродинамики . (КЭД). Во втором порядке теории возмущений К. э. в КЭД описывается двумя Фейнмана диаграммами , изображёнными на рис. 1. Вычисление по этим диаграммам (с использованием Дирака уравнения для электрона) дифференц. сечения К. э. приводит к Клейна - Нишины формуле , хорошо согласующейся с опытом.

Рис. 1. Диаграммы Фсйнмана для Комптона эффекта: е, и - электрон и фотон соответственно в начальном и конечном состояниях; е* - виртуальный электрон в промежуточном состоянии.

Для К. э. при высоких энергиях характерна острая направленность рассеянного излучения по направлению первичного фотона; с ростом энергии фотонов эта угл. асимметрия увеличивается. Полное эфф. сечение комптоновского рассеяния (полученное интегрированием по углам ф-лы Клейна - Нишины) падает с увеличением (рис. 2).

К. э. является одним из осн.. механизмов, определяющих потери энергии при прохождении -излучения через вещество. Абс. сечение К. э., а также его соотношение с сечениями фотоэффекта и рождения пар электрон-позитрон в реальных веществах сильно зависят от ат. номера Z . На рис. 2 показано соотношение указанных процессов в свинце. В пределе нулевых частот полное сечение К. э. на отд. электроне переходит в сечение классич. (томсоновского) рассеяния , где =2,8*10 -13 см - т. н. классич. радиус электрона. При этом =6,65 10 -25 см 2 . Как видно из рис. 2, при энергиях в интервале 0,5-5 МэВ К. э. даёт осн. вклад в потери энергии фотонами в свинце (в воздухе соответствующий интервал составляет 0,1-20 МэВ).

Рис. 2. Зависимость полного сечения о в свинце от энергии фотона в единицах энергии покоя электрона m е c 2 для Комптона эффекта (1) , фотоэффекта (2) , рождения пар е + е - (3); по оси ординат отложена величина линейного поглощения фотонов = N (N - концентрация атомов вещества).

Если электрон, на к-ром рассеивается фотон, не покоится, а является ультрарелятивистским с энергией , то при столкновении электрон теряет, а фотон приобретает энергию и длина волны света при столкновении уменьшается (частота увеличивается). Такое явление наз. обратным к о м п т о н-эффектом. Если направления скоростей нач. фотонов распределены изотропно, то ср. энергия рассеянных фотонов при обратном К. э. определяется соотношением

Обратный К. э. является гл. механизмом потерь энергии электронами, движущимися в магн. поле космич. радиоисточников. Он является также причиной возникновения изотропного рентг. космич. излучения с энергией 50-100 кэВ, представляющего собой фотоны отдачи при рассеянии релятивистских электронов на изотропном микроволновом космич. фоновом излучении.

В процессе рассеяния электрон может поглотить один, а излучить в конечном состоянии не один (как в случае обычного К. э.), а два фотона. Это явление наз. двойным комптон-эффектом. Оно было теоретически исследовано В. Гайтлером (W. Heit-ler) и Л. Нордхеймом (L. Nordheim) в 1934. Возможен также процесс re-кратного К. э., когда в конечном состоянии излучается п фотонов. Его сечение, вообще говоря, подавлено фактором . Но в случае, когда излучаемые фотоны являются мягкими и непосредственно не регистрируются, такой процесс неотличим от обычного К. э. и имеет большое сечение. Поэтому учёт поправок от n -кратного К. э. важен для интерпретации данных по обычному К. э.

Если К. э. происходит во внеш. поле интенсивной эл--магн. волны [где в каждом конечном интервале частоты содержится много фотонов], то возможен процесс, в к-ром происходит как поглощение из внеш. поля, так и испускание электроном большого числа фотонов. Такой процесс является сложной ф-цией напряжённости внеш. электрич. поля Е и наз. нелинейным комптон-эффектом. Он происходит с заметной вероятностью при , где E 0 имеет масштаб полей на электронной орбите атома водорода. Такие напряжённости электрич. поля пока недостижимы в земных условиях, но существуют на поверхности сверхплотных звёзд.

Комптоновское рассеяние происходит также на др. заряж. частицах, в частности на протоне, однако вследствие большой массы протона эффект заметен лишь при очень высоких энергиях -квантов.

Комптоновское рассеяние используется в исследованиях -излучения атомных ядер, а также для измерения поляризуемости элементарных частиц и ядер и лежит в основе принципа действия нек-рых гамма-спектрометров .

Лит.: Шпольский Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984; Альфа-, бета- и гамма-спектроскопия, пер. с англ., в. 1-4, М., 1969; Л е н г К., Астрофизические формулы, пер. с англ., т. 1-2, М., 1978; Квантовая электродинамика явлений в интенсивном поле, М., 1979. М. В. Терентъев .

К. э. на связанном электроне . В рассеянии фотона связанным (атомным или молекулярным) электроном, в отличие от случая рассеяния на свободном электроне, выделяют три след. канала: рэлеевское рассеяние, при к-ром состояние мишени не меняется; комбинационное рассеяние света , в результате к-рого мишень переходит в др. связанное состояние; комптонов-ское рассеяние, сопровождающееся ионизацией.

Эффект связи электрона в атоме в нач. состоянии приводит в процессе комптоновской ионизации к уши-рению комптоновской линии, т. е. к появлению распределения по частотам вылетающих фотонов при фиксированном угле рассеяния . Взаимодействие электрона с ионным остатком в конечном состоянии приводит к сдвигу максимума комптоновской линии в сторону высоких частот, тем большему, чем больше энергия связи . При любых нач. энергиях фотона ширина комптоновской линии пропорц. . В нерелятивистской области энергий пропорц. частоте налетающего фотона, , а сдвиг её максимума порядка [ - постоянная тонкой структуры, Z эфф - эфф. заряд ядра (в единицах элементарного заряда e ) для рассматриваемой электронной оболочки].

Рис. 3. Диаграмма Фейнмана типа "чайка"; двойная сплошная линия описывает электрон в поле атома, волнистая линия- фотон.

В области энергий электрону в процессе комптоновской ионизации передаётся энергия, значительно большая энергии связи в атоме. Это позволяет интерпретировать рассеяние фотона как процесс, происходящий на свободном электроне, имеющем точно такое же распределение по импульсам, как в связанном состоянии. Такое рассмотрение в рамках импульсного приближения является теоретич. основой нерелятивистского метода изучения электронной структуры атомов, молекул и кристаллов - метода комптоновских, профилей .

В области энергий амплитуда комптон-эффекта на слабо связанном () электроне описывается диаграммой Фейнмана типа "чайка" (рис. 3), в к-рой оператор взаимодействия выражается через волновые векторы k , и поляризации е , падающего и рассеянного фотонов и оператор импульса :

(i = 1, 2, 3) -Дирака матрицы ,_ В области энергий на сечение К. э. определяющее влияние оказывает взаимодействие электрона с ионным остатком в конечном состоянии, т. к. из-за приближённого выполнения закона сохранения импульса (узости комптоновской линии и малости её сдвига) вылетающий электрон обладает в среднем относительно малой энергией. При таких энергиях фотонов процесс комптоновской ионизации интерпретируется как "встряска" типа рассеяния (см. Внезапных возмущений метод) . В соответствии с концепцией "встряски" гл. характеристикой угл. распределения рассеянных фотонов в К. э. на связанном электроне является подходящим образом выбранный "встрясочный" параметр :

где b = 1+ . Величиной параметра N определяются отношения эфф. сечений , показанных для К -электронов на рис. 4.

Рис. 4. Угловые распределения рассеянных фотонов в процессе комптоновской ионизации К-оболочек лёгких элементов (штрих-пунктирные линии; r e = е 2 /mс 2 - классический радиус электрона); сплошные линии - расчёт по формуле Клейна - Нишины.

Эти отношения как ф-ции параметра N оказываются универсальными не только для К -электронов, но и для каждой конкретной атомной оболочки.

В связи с прогрессом лазерной техники в ряде исследований ставятся вопросы о влиянии сильных эл--магн. полей на разл. элементарные атомные процессы. Имеется целый класс эффектов вынужденного поглощения или испускания фотонов внеш. лазерного поля, происходящих на фоне осн. процесса, к-рым может быть фотоионизация, комптоновская ионизация, тор-можение электрона на атоме и т. д. . В области параметров, где сечения этих вынужденных процессов велики, они могут быть интерпретированы как процессы "встряски". В случаях, когда параметр N не содержит постоянной Планка (напр., в процессах испускания и рассеяния фотонов классич. электроном), вынужденные эффекты имеют классич. объяснение при любом чпсле испускаемых (поглощаемых) лазерных фотонов. Так, процесс комптоновского рассеяния жёсткого фотона с энергией на электроне, помещённом в интенсивное низкочастотное (с частотой ) лазерное поле, с классич. точки зрения описывается как высокочастотное излучение электрона, находящегося в поле двух эл--магн. волн .

Лит.: 1) Зоммерфельд А., Строение атома и спектры, пер. с нем., т. 2, М., 1956; 2) Б у ш у е в В. А., Кузьмин Р. Н., Неупругое рассеяние рентгеновского и синхро-тронного излучений в кристаллах, когерентные эффекты в неупругом рассеянии, "УФН", 1977, т. 122, с. 81; 3) Дыхне A.M., Юдин Г. Л., "Встряхивание" квантовой системы и характер стимулированных им переходов, "УФН", 1978, т. 125, с. 377; 4) Дыхне А. М., Юдин Г. Л., Вынужденные эффекты при "встряске" электрона во внешнем электромагнитном поле, "УФН", 1977, т. 121, с. 157. Г.Л.Юдин .

При большой энергии фотонов, в частности, для рентгеновского излучения ( ~ 0,1 МэВ) процесс поглощения фотонов электронами вещества становится маловероятным. В этом случае при взаимодействии электромагнитного излучения с веществом наблюдается его рассеяние с изменением направления распространения.

Действительно, в системе отсчета, в которой свободный электрон первоначально покоился, закон сохранения энергии с учетом возможных релятивистских скоростей электрона после удара может быть записан в виде

где - масса покоя электрона, - релятивистский множитель, - скорость электрона после столкновения с фотоном, - частота падающего излучения, - частота рассеянного излучения.


Рассеяние фотона на свободном электроне

Разделив члены уравнения (1.60) на , его можно преобразовать к виду

где , .

Заметим, что уже закон сохранения энергии (6.41.14) объясняет эффект Комптона качественно. Действительно, так как > , то из (6.41.14) следует, что > ( < ) .

Возведем левую и правую части уравнения (6.41.15) в квадрат:

(6.41.16)

В упругом столкновении фотона с электроном выполняется также закон сохранения импульса, который можно записать в виде

(6.41.17)

Построив векторную диаграмму закона сохранения импульса, из треугольника импульсов находим, что

где - угол между направлениями падающего и рассеянного излучения.

Треугольник импульсов

Вычтем из (6.41.16) выражение (6.41.18):

Выражение (6.41.19) можно преобразовать к виду:

Умножив члены равенства (6.41.20) на 2 и разделив на , получим:

(6.41.21)

Так как окончательно получаем формулу Комптона:

Следует заметить, что значительная часть электронов вещества не является свободными, а связаны с атомами. Если энергия кванта излучения велика по сравнению с энергией связи электрона, то рассеяние на таком электроне происходит как на свободном электроне. В противном случае, рассеиваясь на связанном электроне, фотон обменивается энергией и импульсом фактически со всем атомом в целом. При таком рассеянии для расчета изменения длины волны излучения также можно применить формулу (6.41.22), где, однако, под следует понимать уже массу всего атома. Это изменение оказывается настолько малым, что его нельзя практически обнаружить экспериментально.

В диапазоне энергий квантов 0,1− 10 МэВ комптон-эффект является основным физическим механизмом энергетических потерь -излучения при его распространении в веществе. Поэтому комптоновское рассеяние широко используется в исследованиях -излучения атомных ядер. Оно лежит в основе принципа действия некоторых гамма-спектрометров.

Эффект Комптона является одним из краеугольных камней квантовой механики. В 1922 году физик Артур Холли Комптон объяснил увеличение длины волны х-лучей и других энергетических электромагнитных излучений, рассматривая их как совокупность дискретных импульсов или квантов электромагнитной энергии.

Эффект Комптона

Химик Гилберт Льюис (США) ввел термин «фотон» для световых квантов. Фотоны имеют свою энергию и импульсы. Они также располагают волновыми характеристиками, такими как длина волны и частота. Энергия фотонов находится в прямой пропорциональной зависимости от частоты и в обратной от ее протяженности. Эффект Комптона подразумевает сталкивание фотонов с одиночными электронами. Во время этого процесса их энергии соединяются, и под определенным углом происходит волновой разброс, размер которого зависит от исходного количества данных. Из-за соотношения между энергией и длиной волны, рассеянные фотоны обладают большей длиной, что также зависит от величины угла, через который рентгеновские лучи были направлены.

Комптоновское рассеяние

Неупругое рассеивание фотона на свободной заряженной частице заканчивается ослаблением энергии, при этом длина волны фотона увеличивается в размере. Часть этой энергии распыляется на находящиеся поблизости электроны. Существует также обратный процесс. Комптоновское рассеяние является неупругим, поскольку протяженность волны света, который был рассеян, отлична от падающего излучения. Что же предложил Комптон? Эффект в данном случае может рассматриваться как упругое сталкивание. Передвижение электронов в атомах ведет к увеличению ширины комптоновской полосы рассеянного света. Это можно объяснить тем, что для находящихся в движении электронов протяженность волны падающего излучения выглядит немного трансформированной, при этом величина перемен находится в прямой зависимости от размера и направления скорости перемещения электрона.

В честь кого эффект получил свое название

Эффект Комптона получил свое название в честь имени профессора Вашингтонского университета Артура Холли Комптона (1892—1962), физика из США, который получил Нобелевскую премию в 1927 году за свое открытие. Выпускник университета Вустера и Принстонского университета, он разработал теорию интенсивности отражения рентгеновских лучей от кристаллов в качестве средства изучения расположения электронов и атомов. В 1918 году он начал свои исследования. В 1919 году Комптон одним из первых был награжден национальной исследовательской стипендией Совета. Он был принят на стажировку в Кавендишскую лабораторию в Кембридже (Англия) и затем в Вашингтонский университет. Работая с х-лучами, он усовершенствовал свой аппарат для измерения сдвига длины волны от угла рассеивания.

Фотонно-электронное взаимодействие

Одним из важнейших понятий при изучении комптоновского рассеивания является фотон, который, согласно теории света, является квантом электромагнитной энергии и они всегда находятся в движении, и даже в вакууме есть постоянная скорость распространения света. Эффект Комптона имеет важное значение, поскольку он демонстрирует, что свет не стоит рассматривать чисто как волновой феномен. В 1923 году Комптон подарил миру науки статью, в которой он вывел математическое соотношение между сдвигом в длине волны и углом рассеивания х-лучей, предполагая, что каждый свободный рентгеновский фотон начнет взаимодействие с одной заряженной частицей. Это приводит к тому, что электрону отдается часть энергии, а фотон, содержащий оставшуюся часть энергии, испускает ее в сторону, отличную от начальной, при этом общий импульс системы сохраняется. Этот эффект является одной из трех основных форм взаимодействия фотонов и главной причиной рассеянного излучения в материале. Это происходит из-за взаимодействия рентгеновского или гамма-фотона с крайними (и, как следствие, слабо связанными между собой) валентными электронами на атомном уровне.

Фотон с точки зрения квантовой теории

В 1800-х годах волновые световые характеристики и электромагнитное излучение в целом стали абсолютно очевидными. Однако раньше ученые не придавали этим явлениям большого значения. Так было до тех пор, пока Альберт Эйнштейн не объяснил фотоэлектрический эффект и всем дал понять, что световая энергия должна была быть рассмотрена как часть квантованной теории. Как уже упоминалось выше, свет имеет волны и частицы. Это было поразительным открытием и, безусловно, за пределами обычного восприятия вещей.

Поскольку энергия и величина импульса пропорциональны его частоте, после взаимодействия фотон имеет меньшую частоту, а длина волны при этом увеличивается. Этот показатель зависит только от угла, который образуется между падающим и рассеянным лучами. Наибольший угол рассеивания позволит получить большее увеличение. Эффект используется при исследовании электронов в веществе и в производстве переменной энергии гамма-лучей. Формула Комптона для сдвига Δλ длины волны света: Δλ = λ’ − λ = λ0(1 cos θ), где λ’ - это длина волны рассеянного света, θ - это угол рассеяния фотона, и λ0 = 2.426 × 1010 см = 0.024 Ангстрем (Å). Из формулы видно, что смещение в длине волны не зависит от протяженности волны падающего излучения. Он определяется исключительно углом рассеяния фотона и является наибольшим при угле 180°.

Основные свойства фотонов

  1. Движение в свободном пространстве с постоянной скоростью.
  2. Фотоны не имеют массы.
  3. Они несут энергию и импульс, которые также связаны с частотой и длиной волны.
  4. Они могут быть уничтожены при поглощении излучения.
  5. Фотоны нейтральны с электронной точки зрения и являются одними из самых редких частиц.

Значение эффекта в различных областях науки

Комптоновское рассеяние, которое часто называют некогерентным рассеянием, имеет важное значение в атомной энергетике (радиационная защита), экспериментальной и теоретической ядерной физике, физике плазмы и атома, рентгеновской кристаллографии, физике элементарных частиц и астрофизике. Эффект Комптона дает важный инструмент для исследования в некоторых отраслях медицины, в молекулярной химии и физике твердого тела, а также использовании высокоэнергетических ускорителей для электронов. Это открытие имеет первостепенное значение для радиобиологии, потому что оно является наиболее подходящим для взаимодействия высокой энергии рентгеновских лучей с ядрами атомов в живых организмах и применяется в лучевой терапии. В физических материалах этот эффект может быть использован для зондирования волновой функции электронов в веществе.

Также Комптон открыл явление полного отражения рентгеновских лучей и их полной поляризации, которые привели к более точному определению числа электронов в атоме. Он был также первым, кто получил рентгеновские спектры прямым методом измерения длины волны рентгеновских лучей. Путем сравнения этих спектров с данными, полученными при использовании кристалла, могут быть определены абсолютные значения расстояния между атомами в кристаллической решетке. Комптон занимал пост президента американского физического общества в 1934 году. Он был канцлером Вашингтонского университета с 1946 по 1953 год. Великий физик умер в 1962 году в возрасте 69 лет.

Невероятное открытие

Основанный на квантовых представлениях о природе света эффект Комптона иллюстрирует одно из наиболее фундаментальных взаимодействий между излучением и веществом и в очень наглядной форме показывает истинную квантовую природу электромагнитного излучения. Пожалуй, наибольшее значение данного эффекта заключается в том, что он демонстрирует прямо и четко, что в дополнение к волновой природе с ее поперечными колебаниями, электромагнитное излучение также содержит частицы природы - фотоны, которые ведут себя вполне как материальные вещества при столкновениях с электронами. Это открытие привело к разработке квантовой механики и послужило основой для начала теории квантовой электродинамики, теории взаимодействия электронов с электромагнитным полем.

КОМПТОНА ЭФФЕКТ, изменение длины волны, сопровождающее рассеяние пучка рентгеновских лучей в тонком слое вещества. Явление было известно еще за несколько лет до работы А.Комптона, который опубликовал в 1923 результаты тщательно выполненных экспериментов, подтвердивших существование этого эффекта, и одновременно предложил его объяснение. (Вскоре независимое объяснение было дано П.Дебаем, почему явление иногда называют эффектом Комптона – Дебая.)

В то время существовали два совершенно разных способа описания взаимодействия света с веществом, каждый из которых подтверждался значительным числом экспериментальных данных. С одной стороны, теория электромагнитного излучения Максвелла (1861) утверждала, что свет представляет собой волновое движение электрического и магнитного полей; с другой, квантовая теория Планка и Эйнштейна доказывала, что при некоторых условиях пучок света, проходя через вещество, обменивается с ним энергией, причем процесс обмена напоминает столкновение частиц. Важное значение работы Комптона состояло в том, что она явилась важнейшим подтверждением квантовой теории, поскольку, показав неспособность теории Максвелла объяснить экспериментальные данные, Комптон предложил простое объяснение, основанное на гипотезе квантов.

Согласно теории Планка и Эйнштейна, энергия света с частотой n передается порциями – квантами (или фотонами), энергия которых Е равна постоянной Планка h , умноженной на n . Комптон же предположил, что фотон несет импульс, который (как следует из теории Максвелла) равен энергии Е , деленной на скорость света с . При столкновении с электроном мишени рентгеновский квант передает ему часть своей энергии и импульса. В результате рассеянный квант вылетает из мишени с меньшими энергией и импульсом, а следовательно, с более низкой частотой (т.е. с большей длиной волны). Комптон указал, что каждому рассеянному кванту должен отвечать выбиваемый первичным фотоном быстрый электрон отдачи, что и наблюдается экспериментально.

Разработанная позднее Комптоном теория сводилась к следующему. Согласно формулам релятивистской механики, масса частицы, движущейся со скоростью v , равна

где m 0 – масса той же частицы в состоянии покоя (при v = 0), а c – скорость света. Полная энергия частицы дается выражением E = mc 2 , но лишь часть ее составляет кинетическая энергия, так как покоящаяся частица имеет энергию m 0 c 2 . Поэтому кинетическую энергию KE частицы можно найти, вычтя эту энергию из полной:

Импульс частицы равен произведению ее массы на скорость; следовательно,

Сохранение энергии при столкновении фотона с электроном требует, чтобы выполнялось равенство

Поскольку импульс электрона отдачи равен

баланс импульса вдоль оси AB таков:

а вдоль оси CD , перпендикулярной AB ,

где n ў – частота рассеянного кванта. Из этих трех уравнений следует, что увеличение l ў – l длины волны рассеянного кванта равно:

тогда как энергия электрона отдачи в зависимости от угла его вылета равна:

Величина h / m 0 c в формуле для Dl представляет собой универсальную постоянную, которая называется комптоновской длиной волны и равна 0,0242 Å (1 Å равен 10 –8 см). Для рентгеновских квантов с длиной волны 10 –8 см и меньше сдвиг длины волны, очевидно, весьма значителен.

Позднее на основе собственных и других экспериментальных данных Комптону удалось показать, что формулы точно предсказывают зависимость энергии кванта и электрона от углов их вылета. Поскольку при вычислениях использовались лишь законы сохранения энергии и импульса, а эти законы справедливы и в современной квантовой механике, формулы Комптона не нуждаются в каких-либо уточнениях. Однако их можно дополнить, поскольку они ничего не говорят об относительном числе квантов, рассеянных в различных направлениях. Такая теория, дающая выражение для интенсивности рассеянного излучения, была впервые разработана на основе дираковской релятивистской квантовой механики О.Клейном и Й.Нишиной в 1929, и вновь было найдено, что теория хорошо описывает эксперимент.

Значение открытия Комптона состояло в том, что впервые было показано наличие у планковских и эйнштейновских квантов света всех механических свойств, присущих прочим физическим частицам. За свое открытие А.Комптон был удостоен Нобелевской премии по физике за 1927.

Наличие у света корпускулярных свойств также подтверждается комптоновским рассеянием фотонов. Эффект назван в честь открывшего в 1923 г. это явление американского физика Артура Холли Комптона. Он изучал рассеяние рентгеновских лучей на различных веществах.

Эффект Комптона – изменение частоты (или длины волны) фотонов при их рассеянии. Может наблюдаться при рассеянии на свободных электронах фотонов рентгеновского диапазона или на ядрах при рассеянии гамма-излучения.

Рис. 2.5. Схема установки для исследования эффекта Комптона.

Тр – рентгеновская трубка

Эксперимент Комптона заключался в следующем: он использовал так называемую линию К α в характеристическом рентгеновском спектре молибдена с длиной волны λ 0 = 0.071нм. Такое излучение можно получить при бомбардировке электронами молибденового анода (рис. 2.5), отрезав излучения других длин волн с помощью системы диафрагм и фильтров (S ). Прохождение монохроматического рентгеновского излучения через графитовую мишень (М ) приводит к рассеянию фотонов на некоторые углы φ , то есть к изменению направления распространения фотонов. Измеряя с помощью детектора (Д ) энергию рассеянных под различными углами фотонов, можно определить их длину волны.

Оказалось, что в спектре рассеянного излучения наряду с излучением, совпадающим с падающим, присутствует излучение с меньшей энергией фотонов. При этом различие между длинами волн падающего и рассеянного излучений ∆λ = λ – λ 0 тем больше, чем больше угол, определяющий новое направление движения фотона. То есть на большие углы рассеивались фотоны с бóльшей длиной волны.

Этот эффект не может быть обоснован классической теорией: длина волны света при рассеянии изменяться не должна, т.к. под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому должен излучать под любым углом вторичные волны той же частоты.

Объяснение эффекту Комптона дала квантовая теория света, в рамках которой процесс рассеяния света рассматривается как упругое столкновение фотонов с электронами вещества . В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения в точности как при упругом столкновении двух тел.

Рис. 2.6. Комптоновское рассеяние фотона

Поскольку после взаимодействия релятивистской частицы фотона с электроном последний может получить ультравысокую скорость, закон сохранения энергии необходимо писать в релятивистской форме:

(2.8)

Где hν 0 и – энергии соответственно падающего и рассеянного фотонов, mc 2 – релятивистская энергия покоя электрона – энергия электрона до столкновения, E e – энергия электрона после столкновения с фотоном. Закон сохранения импульса имеет вид:



(2.9)

где p 0 и p – импульсы фотона до и после столкновения, p e – импульс электрона после столкновения с фотоном (до столкновения импульс электрона равен нулю).

Возведем в квадрат выражение (2.30) и помножим на с 2 :

Воспользуемся формулами (2.5) и выразим импульсы фотонов через их частоты: (2.11)

Учитывая, что энергия релятивистского электрона определяется формулой:

(2.12)

и используя закон сохранения энергии (2.8), получим:

Возведем в квадрат выражение (2.13):

Сравним формулы (2.11) и (2.14) и проведем простейшие преобразования:

(2.16)

Частота и длина волны связаны соотношением ν =с/λ , поэтому формулу (2.16) можно переписать в виде: (2.17)

Разность длин волн λ λ 0 является очень малой величиной, поэтому комптоновское изменение длины волны излучения заметно лишь при малых абсолютных значениях длины волны, то есть эффект наблюдается только для рентгеновского или гамма-излучения.

Длина волны рассеянного фотона, как показывает эксперимент, не зависит от химического состава вещества, она определяется только углом θ , на который рассеивается фотон. Это легко объяснить, если учесть, что рассеяние фотонов происходит не на ядрах, а на электронах, которые в любом веществе идентичны.

Величина h/mc в формуле (2.17) называется комптоновской длиной волны и для электрона равна λ c = 2.43·10 –12 м.