Классификация и номенклатура сложных неорганических соединений. Неорганические вещества: примеры и свойства

Классификация веществ

Все вещества делятся на простые (элементарные) и сложные. Простые вещества состоят из одного элемента, сложные – из двух и более элементов. Простые вещества разделяются на металлы и неметаллы.

Металлы имеют характерный «металлический» блеск, обладают ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.

Неметаллы не обладают характерным для металлов блеском, хрупки, очень плохо проводят теплоту и электричество. Некоторые из них при обычных условиях газообразны.

Сложные вещества делят на органические и неорганические (минеральные). Органическими принято называть соединения углерода, за исключением простейших соединений углерода (CO, CO 2 , H 2 CO 3 , HCN и их солей и др.); все остальные вещества называются неорганическими.

Сложные неорганические соединения классифицируются как по составу, так и по химическим свойствам (функциональным признакам). По составу они, прежде всего, подразделяются на двухэлементные, или бинарные, соединения (оксиды, сульфиды, галогениды, нитриды, карбиды, гидриды) и многоэлементные соединения; кислородсодержащие, азотсодержащие и т. п.

По химическим свойствам неорганические соединения подразделяются на четыре основных класса: оксиды, кислоты, основания, соли.

Оксиды

Оксидами называются сложные вещества, состоящие из двух элементов, один из которых кислород (Cr 2 O 3 , K 2 O, CO 2 и т. д.). Кислород в оксидах всегда двухвалентен и имеет степень окисления, равную -2.

По химическим свойствам оксиды подразделяются на солеобразующие и несолеобразующие (безразличные: CO, NO, N 2 O). Солеобразующие оксиды подразделяются на основные, кислотные и амфотерные.

Основными называются оксиды, взаимодействующие с кислотами или кислотными оксидами, с образованием солей:

CuO + 2HCl=CuCl 2 + H 2 O,

MgO + CO 2 = MgCO 3 .

Образование основных оксидов характерно для металлов с невысокой степенью окисления (+1, +2).

Оксиды щелочных (Li, Na, K, Rb, Cs) и щелочноземельных металлов (Ca, Sr, Ba, Ra) взаимодействуют с водой, образуя основания. Например:

Na 2 O + H 2 O = 2NaOH,

CaO + H 2 O = Ca(OH) 2 .

Большая часть основных оксидов с водой не взаимодействует. Основания таких оксидов получают косвенным путем:

a) CuO + 2HCl=CuCl 2 + H 2 O;

б) CuCl 2 + 2KOH = Cu(OH) 2 +2KCl.

Кислотными называются оксиды, взаимодействующие с основаниями или с основными оксидами с образованием солей. Например:

SO 3 + 2KOH = K 2 SO 4 + H 2 O,

CaO + CO 2 = CaCO 3 .

К кислотным оксидам относятся оксиды типичных неметаллов -SO 2 , N 2 O 5 , SiO 2 , CO 2 и др., а также оксиды металлов с высокой степенью окисления (+5,+6,+7, +8) -V 2 O 5 , CrO 3 , Mn 2 O 7 и др.

Ряд кислотных оксидов (SO 3 , SO 2 , N 2 O 3 , N 2 O 5 , CO 2 и др.) при взаимодействии с водой образуют кислоты:

SO 3 + H 2 O = H 2 SO 4 ,

N 2 O 5 + H 2 O = 2HNO 3 .

Соответствующие кислоты других кислотных оксидов (SiO 2 , TeO 2 , TeO 3 , MoO 3 , WO 3 , и др.) получают косвенным путем. Например:

а) SiO 2 + 2NaOH = Na 2 SiO 3 + H 2 O

б) Na 2 SiO 3 +2HCl= H 2 SiO 3 + 2NaCl

Один из способов получения кислотных оксидов – отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называют ангидридами кислот.

Амфотерными называют оксиды, образующие соли при взаимодействии, как с кислотами, так и с основаниями, т. е. обладающие двойственными свойствами – свойствами основных и кислотных оксидов. Например:

SnO + H 2 SO 4 = SnSO 4 + H 2 O,

SnO + 2KOH + H 2 O = K 2 ,

ZnO + 2KOH = K 2 ZnO 2 + H 2 O.

К числу амфотерных оксидов относятся: ZnO, BeO, SnO, PbO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , Sb 2 O 3 , MnO 2 и др.

Следует отметить, что в соответствии с изменением химической природы элементов в периодической системе элементов (от металлов к неметаллам) закономерно изменяются и химические свойства соединений, в частности, кислотно-основная активность их оксидов. Так, в случае высших оксидов элементов 3 периода в ряду: Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 - по мере уменьшения степени полярности связи Э-О (уменьшается DЭО; уменьшается отрицательный эффективный заряд атома кислорода) ослабляются основные и нарастают кислотные свойства оксидов: Na 2 O, MgO - основные оксиды; Al 2 O 3 – амфотерный; SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 - кислотные оксиды (слева направо кислотный характер оксидов усиливается).

Способы получения оксидов:

1. Взаимодействие простых веществ с кислородом (окисление):

4Fe + 3O 2 = 2Fe 2 O 3 ,

S + O 2 = SO 2 .

2. Горение сложных веществ:

CH 4 + 2O 2 = CO 2 + 2H 2 O,

2SO 2 + O 2 = 2SO 3 .

3. Термическое разложение солей, оснований, кислот:

CaCO 3 ® CaO + CO 2 ,

Cd(OH) 2 ® CdO + H 2 O,

H 2 SO 4 ® SO 3 + H 2 O.

Номенклатура оксидов. Названия оксидов строятся из слова “оксид” и названия элемента в родительном падеже, который соединен с атомами кислорода. Если элемент образует несколько оксидов, то в скобках римскими цифрами указывается его степень окисления (с.о.), при этом знак с. о. не указывается. Например, MnO 2 – оксид марганца (IV), MnO – оксид марганца (II). Если элемент образует один оксид, то его с. о. не приводится: Na 2 O – оксид натрия.

Иногда в названиях оксидов встречаются приставки ди-, три-, тетра- и т.д. Они обозначают, что в молекуле этого оксида на один атом элемента приходится 2,3,4 и т.д. атома кислорода, например, CO 2 – диоксид углерода и т.д.

Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды – сложные вещества, содержащие гидроксогруппы OH. Некоторые из них (основные гидроксиды) проявляют свойства оснований - NaOH, Ba(OH) 2 и т.п.; другие (кислотные гидроксиды) проявляют свойства кислот – HNO 3 , H 3 PO 4 , и др.; существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как основные, так и кислотные свойства - Zn(OH) 2 , Al(OH) 3 и др.

Свойства и характер гидроксидов также находятся в зависимости от заряда ядра центрального атома (условное обозначение Э) и его радиуса, т.е. от прочности и полярности связей Э – О и О – Н.

Если энергия связи E O - H << E Э - О, то диссоциация гидроксида протекает по кислотному типу, т. е. разрушается связь О – Н.

ЭОН Û ЭО - + H +

Если E O-H >> E Э – O , то диссоциация гидроксида протекает по основному типу, т. е. разрушается связь Э - O

ЭOH Û Э + + OH -

Если энергии связей O – H и Э – О близки или равны, то диссоциация гидроксида может протекать одновременно по обоим направлениям. В этом случае речь идет об амфотерных гидроксидах:

Э n+ + nOH - Û Э(OH) n = H n ЭO n Û nH + + ЭО n n-

В соответствии с изменением химической природы элементов в периодической системе элементов закономерно изменяется кислотно-основная активность их гидроксидов: от основных гидроксидов через амфотерные к кислотным. Например, для высших гидроксидов элементов 3 периода:

NaOH, Mg(OH) 2 – основания (слева направо основные свойства ослабевают);

Al(OH) 3 – амфотерный гидроксид;

H 2 SiO 3 , H 3 PO 4 , H 2 SO 4 , HСlO 4 – кислоты (слева направо сила кислот увеличивается).

Гидроксиды металлов относятся к основаниям. Чем ярче выражены металлические свойства элемента, тем сильнее выражены основные свойства соответствующего гидроксида металла в высшей с.о. Гидроксиды неметаллов проявляют кислотные свойства. Чем ярче выражены неметаллические свойства элемента, тем сильнее кислотные свойства соответствующего гидроксида.

Кислоты

Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка (с позиций теории электролитической диссоциации).

Кислоты классифицируют по их силе (по способности к электролитической диссоциации – на сильные и слабые), по основности (по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли – на одноосновные, двухосновные, трехосновные), по наличию или отсутствию кислорода в составе кислоты (на кислородсодержащие и бескислородные). Например, азотная кислота HNO 3 – сильная, одноосновная, кислородсодержащая кислота; сероводородная кислота H 2 S – слабая, двухосновная, бескислородная кислота.

Химические свойства кислот:

1. Взаимодействие с основаниями с образованием соли и воды (реакция нейтрализации):

H 2 SO 4 + Cu (OH) 2 = CuSO 4 + 2H 2 O.

2. Взаимодействие с основными и амфотерными оксидами с образованием солей и воды:

2HNO 3 + MgO = Mg(NO 3) 2 + H 2 O,

H 2 SO 4 + ZnO = ZnSO 4 + H 2 O.

3. Взаимодействие с металлами. Металлы, стоящие в “Ряду напряжений” до водорода, вытесняют водород из растворов кислот (кроме азотной и концентрированной серной кислот); при этом образуется соль:

Zn + 2HCl =ZnCl 2 + H 2 ­.

Металлы, находящиеся в “Ряду напряжений” после водорода, водород из растворов кислот не вытесняют

Взаимодействие металлов с азотной и концентрированной серной кислотами см. в разделе 11.

4. Некоторые кислоты при нагревании разлагаются:

H 2 SiO 3 H 2 O + SiO 2 .

5. Менее летучие кислоты вытесняют более летучие кислоты из их солей:

H 2 SO 4 конц + NaCl тв = NaHSO 4 + HCl.

6. Более сильные кислоты вытесняют менее сильные кислоты из растворов их солей:

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

Номенклатура кислот. Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например, CN – циан, CNS – родан) суффикс -о- , окончание водородная и слово “кислота”. Например, HCl – хлороводородная кислота, H 2 S – сероводородная кислота, HCN – циановодородная кислота.

Названия кислородосодержащих кислот также образуются от русского названия кислотообразующего элемента с добавлением соответствующих суффиксов, окончаний и слова “кислота”. При этом название кислоты, в которой элемент находится в высшей степени окисления, оканчивается на -ная или -овая ; например, H 2 SO 4 – серная кислота, HClO 4 – хлорная кислота, H 3 AsO 4 – мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: -оватая (HClO 3 - хлорноватая кислота), истая (HClO 2 - хлористая кислота), -оватистая (HClO - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее более низкой степени окисления элемента, имеет окончание истая (HNO 3 – азотная кислота, HNO 2 – азотистая кислота).

В некоторых случаях к одной молекуле оксида может присоединиться различное количество молекул воды (т.е. элемент в одной и той же степени окисления образует несколько кислот, содержащих по одному атому данного элемента). Тогда кислоту с большим содержанием воды обозначают приставкой орто - , а кислоту с меньшим числом молекул воды обозначают приставкой мета - . Например:

P 2 O 5 + H 2 O = 2HPO 3 - метафосфорная кислота;

P 2 O 5 + 3H 2 O = 2H 3 PO 4 - ортофосфорная кислота.

Основания

Основаниями с позиций теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид - ионов OH ‾ и ионов металлов (исключение NH 4 OH).

Основания классифицируют по их силе (по способности к электролитической диссоциации – на сильные и слабые), по кислотности (по количеству гидроксогрупп в молекуле, способных замещаться на кислотные остатки – на однокислотные, двукислотные и т. д.), по растворимости (на растворимые основания – щелочи и нерастворимые). Например: NaOH – сильное, однокислотное основание, растворимое (щелочь); Cu(OH) 2 – слабое, двукислотное, нерастворимое основание. К растворимым основаниям (щелочам) относятся гидроксиды щелочных и щелочноземельных металлов. К сильным основаниям относятся все щелочи.

Химические свойства оснований:

1. Взаимодействие с кислотами:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 ¯ + H 2 O.

2. Взаимодействие с кислотными оксидами:

3. Взаимодействие с амфотерными оксидами:

2KOH + Al 2 O 3 = 2KAlO 2 + H 2 O 1,

2KOH + SnO + H 2 O = K 2 [ Sn(OH) 4 ].

4. Взаимодействие с амфотерными основаниями:

2NaOH + Zn(OH) 2 = Na 2 ZnO 2 +2H 2 O2,

2NaOH + Zn(OH) 2 = Na 2 [ Zn(OH) 4 ]3.

5. Термическое разложение оснований с образованием оксидов и воды:

Ca(OH) 2 = CaO + H 2 O.

Гидроксиды щелочных металлов при нагревании не распадаются.

6. Взаимодействие с амфотерными металлами (Zn, Al, Pb, Sn, Be):

Zn + 2NaOH + 2H 2 O = Na 2 + H 2

Амфотерные гидроксиды. Амфотерные гидроксиды (гидраты амфотерных оксидов) способны диссоциировать в водных растворах как по типу кислот, так и по типу оснований. Например:

ZnO 2 2- + 2H + Û Zn(OH) 2 Û Zn 2+ + 2OH .

Поэтому они обладают амфотерными свойствами, т.е. могут взаимодействовать как с кислотами, так и с основаниями:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O,

Sn(OH) 2 + 2NaOH = Na 2 [ Sn(OH) 4 ].

Номенклатура оснований. Названия оснований строятся из слова “гидроксид ” и названия металла в родительном падеже с указанием в скобках римскими цифрами его степени окисления, если это величина переменная. Иногда к слову гидроксид добавляют префикс из греческого числительного, указывающий на число гидроксогрупп в молекуле основания. Например: KOH - гидроксид калия; Al(OH) 3 - гидроксид алюминия (тригидроксид алюминия); Cr(OH) 2 – гидроксид хрома (II) (дигидроксид хрома).

Соли

С точки зрения теории электролитической диссоциации соли - это вещества, диссоциирующие в растворах или в расплавах с образованием положительно заряженных ионов, отличных от ионов водорода, и отрицательно заряженных ионов, отличных от гидроксид – ионов.

Соли рассматривают обычно как продукты полного или частичного замещения атомов водорода в молекуле кислоты атомами металла или продукты полного или частичного замещения гидроксогрупп в молекуле основания кислотными остатками. При полном замещении получаются средние (или нормальные) соли, диссоциирующие в растворах или в расплавах с образованием катионов металлов и анионов кислотных остатков (исключение – соли аммония). При неполном замещении водорода кислоты получаются кислые соли, при неполном замещении гидроксогрупп основания – основные соли. Диссоциация кислых и основных солей рассматривается в разделе 8. Кислые соли могут быть образованы только многоосновными кислотами (H 2 SO 4 , H 2 SO 3 , H 2 S,H 3 PO 4 и т. д.), а основные соли – многокислотными основаниями (Mg (OH) 2 ,Ca (OH) 2 , Al (OH) 3 и т. д.).

Примеры образования солей:

Ca (OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O,

CaSO 4 (сульфат кальция) – нормальная (средняя) соль;

H 2 SO 4 + NaOH = NaHSO 4 + H 2 O,

NaHSO 4 (гидросульфат натрия) – кислая соль, полученная в результате недостатка взятого основания;

Cu (OH) 2 + HCl = CuOHCl + H 2 O,

CuOHCl (хлорид гидроксомеди (II)) – основная соль, полученная в результате недостатка взятой кислоты.

Химические свойства солей:

I. Соли вступают в реакции ионного обмена, если при этом образуется осадок, слабый электролит или выделяется газ:

с щелочами реагируют соли, катионам металлов которых соответствуют нерастворимые основания:

CuSO 4 + 2NaOH = Na 2 SO 4 + Cu (OH) 2 ↓;

с кислотами взаимодействуют соли:

а) катионы которых образуют с анионом новой кислоты нерастворимую соль:

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl;

б) анионы которой отвечают неустойчивой угольной или какой-либо летучей кислоте (в последнем случае реакция проводится между твердой солью и концентрированной кислотой):

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ,

NaCl тв + H 2 SO 4конц = NaHSO 4 + HCl;

в) анионы которой отвечают малорастворимой кислоте:

Na 2 SiO 3 + 2HCl = H 2 SiO 3 ↓ + 2NaCl;

г) анионы которой отвечают слабой кислоте:

2CH 3 COONa + H 2 SO 4 = Na 2 SO 4 + 2CH 3 COOH;

cоли взаимодействуют между собой, если одна из образующихся новых солей нерастворима или разлагается (полностью гидролизуется) с выделением газа или осадка:

AgNO 3 + NaCl = NaNO 3 + AgCl↓,

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al (OH) 3 ↓ + 6NaCl + 3CO 2 .

II. Соли могут вступать во взаимодействие с металлами, если металл, которому соответствует катион соли, находится в“Ряду напряжений “правее реагирующего свободного металла (более активный металл вытесняет менее активный металл из раствора его соли):

Zn + CuSO 4 = ZnSO 4 + Cu.

III. Некоторые соли разлагаются при нагревании:

CaCO 3 = CaO + CO 2 .

IV. Некоторые соли способны реагировать с водой и образовывать кристаллогидраты:

CuSO 4 + 5H 2 O = CuSO 4 ٭ 5H 2 O ΔH<0

белого цвета сине-голубого цвета

Выделение теплоты и изменение цвета – признаки химических реакций.

V. Соли подвергаются гидролизу. Подробно этот процесс будет описан в разделе 8.10.

VI. Химические свойства кислых и основных солей отличаются от свойств средних солей тем, что кислые соли вступают также во все реакции, характерные для кислот, а основные соли вступают во все реакции, характерные для оснований. Например:

NaHSO 4 + NaOH= Na 2 SO 4 + H 2 O,

MgOHCl + HCl = MgCl 2 + H 2 O.

Получение солей:

1. Взаимодействие основного оксида с кислотой:

CuO + H 2 SO 4 = CuSO 4 + H 2 O.

2. Взаимодействие металла с солью другого металла:

Mg + ZnCl 2 = MgCl 2 + Zn.

3. Взаимодействие металла с кислотой:

Mg + 2HCl = MgCl 2 + H 2 .

4. Взаимодействие основания с кислотным оксидом:

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O.

5. Взаимодействие основания с кислотой:

Fe(OH) 3 + 3HCl= FeCl 3 + 3H 2 O.

6. Взаимодействие соли с основанием:

FeCl 2 + 2KOH = Fe(OH) 2 ¯ + 2KCl.

7. Взаимодействие двух солей:

Ba(NO 3) 2 + K 2 SO 4 = BaSO 4 ¯ + 2KNO 3 .

8. Взаимодействие металла с неметаллом:

9. Взаимодействие кислоты с солью:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 .

10. Взаимодействие кислотного и основного оксидов:

CaO + CO 2 = CaCO 3 .

Номенклатура солей. Согласно международным номенклатурным правилам, названия средних солей образуются из названия кислотного остатка в именительном падеже и названия металла в родительном падеже с указанием в скобках римскими цифрами его степени окисления (если это величина переменная). Название кислотного остатка состоит из корня латинского наименования кислотообразующего элемента, соответствующего окончанияи в некоторых случаях приставки.

Кислотные остатки бескислородных кислот получают окончание ид . Например: SnS – сульфид олова (II), Na 2 Se – селенид натрия. Окончания названий кислотных остатков кислородсодержащих кислот зависят от степени окисления кислотообразующего элемента. Для высшей его степени окисления (“-ная “ или “-овая “ кислота) применяется окончание -ат . Например, соли азотной кислоты HNO 3 называются нитратами, серной кислоты H 2 SO 4 - сульфатами, хромовой кислоты H 2 CrO 4 – хроматами. Для более низкой степени окисления кислотообразующего элемента (“...истая кислота “) применяется окончание ит. Так, соли азотистой кислоты HNO 2 называются нитритами, сернистой кислоты H 2 SO 3 – сульфитами. Если существует кислота с еще более низкой степенью окисления кислотообразующего элемента (“-оватистая кислота “), ее анион получает приставку гипо- и окончание -ит . Например, соли хлорноватистой кислоты HClО называют гипохлоритами.

Соли некоторых кислот в соответствии с исторически сложившейся традицией сохранили названия, отличающиеся от систематических. Так, соли марганцовой кислоты HMnO 4 называют перманганатами, хлорной кислоты HClO 4 – перхлоратами, йодной кислоты HIO 4 – периодатами. Соли марганцовистой кислоты H 2 MnO 4 , хлорноватой HClO 3 и йодноватой HIO 3 кислот называют соответственно манганатами, хлоратами и йодатами.

Названия кислых и основных солей образуются по тем же общим правилам, что и названия средних солей. При этом название аниона кислой соли снабжают приставкой гидро-, указывающей на наличие незамещенных атомов водорода; количество незамещенных атомов водорода указывают греческими числительными приставками. Например, Na 2 HPO 4 – гидроортофосфат натрия, NaH 2 PO 4 – дигидроортофосфат натрия.

Аналогично катион основной соли получает приставку гидроксо- , указывающую на наличие незамещенных гидроксогрупп. Число гидроксильных групп указывают греческим числительным. Например, Cr(OH) 2 NO 3 – нитрат дигидроксохрома (III).

Названия важнейших кислот и их кислотных остатков приведены табл. 4.1.

Таблица 4.1

Названия и формулы кислот и их кислотных остатков


Продолжение табл. 4.1

Во-первых, все неорганические вещества делятся на простые и сложные. Простые вещества - это вещества, состоящие из атомов одного химического элемента. Иными словами, это форма существования элементов в свободном виде. Все остальные вещества являются сложными.

Простые:

1) Неметаллы: H 2 , O 2 , O 3 , N 2 , F 2 , He и др. Всего в периодической таблице химических элементов присутствуют 22 неметалла. В обычных условиях они могут быть в твердом состоянии (I 2), жидком (Br 2) или газообразном (H 2 , O 2 , F 2 , Cl 2 и другие).
2) Металлы: Na, Ag, Fe, Be и другие. Единственным жидким металлом является ртуть (Hg).

Сложные:

1) Оксиды - соединения, состоящие из двух элементов, один из которых кислород в степени окисления -2.

  • Основные
    Оксиды металлов в степени окисления +1 и +2 за исключением ZnO, BeO, PbO, SnO:
    Li 2 O, Na 2 O, K 2 O, CaO, MgO, RaO, SrO и др.
  • Амфотерные
    Оксиды металлов в степени окисления +3 и +4, а также ZnO, BeO, PbO, SnO:
    ZnO, BeO, PbO, SnO, Al 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , MnO 2 , PbO 2 , SnO 2 и др.
  • Кислотные
    Оксиды металлов в степени окисления +5, +6, +7, а также оксиды всех неметаллов кроме CO, NO, N 2 O и SiO:
    CO 2 , P 2 O 5 , SO 2 , SO 3 , NO 2 , CrO 3 и др.
  • Несолеобразующие
    CO, NO, N 2 O и SiO

2) Пероксиды - сложные вещества, в которых атомы кислорода соединены друг с другом и находятся в степени окисления -1.

  • H 2 O 2 - пероксид водорода (перекись водорода)
  • Na 2 O 2 - пероксид натрия
  • BaO 2 - пероксид бария

3) Гидроксиды

  • Основания: растворимые (NaOH, KOH И др.) и нерастворимые (Mg(OH) 2 , Cu(OH) 2 , Fe(OH) 2 , Cr(OH) 2 и др.)
  • Амфотерные гидроксиды (Zn(OH) 2 , Be(OH) 2 , Al(OH) 3 , Fe(OH) 3 , Cr(OH) 3 и др.)
  • Кислородсодержащие кислоты (HNO 3 , H 2 SO 4 , H 2 SO 3 , H 2 CO 3 , H 3 PO 4 и др.)

4) Соли - сложные вещества, состоящие из катиона(ов) металла (или катиона аммония NH 4 +) и аниона(нов) кислотного остатка.

  • Средние (NaNO 3 , CaSO 4 , Cu(NO 3) 2 и др.)
  • Кислые - содержат H (NaHSO 4 , KHSO 3 , CaHPO 4 и др)
  • Основные - содержат группу OH ((CuOH) 2 CO 3 , MgOHBr, ZnOHCl и др.)
  • Двойные - содержат два типа катионов (KAl(SO 4) 2)
  • Смешанные - содержат два типа анионов (CaClBr)
  • Комплексные - состоят из катиона и комплексного аниона (Na 2 , SO 4 , Cl и др.)

5) Бинарные неорганические соединения

  • Карбиды (CaC 2 , Al 4 C 3 и др.)
  • Фосфиды (Na 3 P, Ca 3 P 2 и др.)
  • Силициды (Mg 2 Si, Ca 2 Si и др.)

6) Водородные соединения (также являются бинарными соединениями)

  • Гидриды - соединения щелочных и щелочно-земельных металлов с водородом (NaH, CaH 2 и др.)
  • Летучие водородные соединения - соединения неметаллов с водородом (CH 4 , SiH 4 , NH 3 , PH 3 , H 2 O, H 2 S, HF, HCl, HBr и HI и др.)
  • 4. Элементы теории и вопросы для самопроверки по темам курса. Предисловие
  • 1. Химические формулы. Валентность
  • 2. Номенклатура
  • 3. Классификация неорганических соединений
  • Гидроксиды
  • 4. Структурные формулы
  • Тема 1. Атомно-молекулярное учение
  • 1.2. Газовые законы
  • 1.3. Определение молекулярных масс веществ
  • 1.4. Эквивалент. Эквивалентные массы.
  • Тема 1. Атомно-молекулярное учение и стехиометрия
  • Тема 2. Строение атома
  • 2.1. Корпускулярно-волновое описание движения электрона в атоме
  • 2.2 Волновая теория строения атома.
  • 2.3. Квантовые числа
  • 2.5. Периодическая система и изменение свойств элементов
  • 1) При заполнении уровня и подуровня устойчивость электронной конфигурации возрастает и
  • 2) Особой устойчивостью обладают заполненные (s2, p6, d10, f14) и наполовину заполненные (p3, d5, f7) конфигурации.
  • Тема 2. Строение атома
  • Тема 3. Химическая связь
  • 3.1. Метод валентных связей (вс)
  • Приведённым схемам вс соответствуют структурные формулы (сф) (рис. 3.3), на которых связывающие электронные пары изображают чёрточками (валентная черта), а несвязывающие электроны – точками.
  • 3.2. Метод молекулярных орбиталей (мо)
  • 3.3. Теории металлической связи
  • 3.4. Межмолекулярные взаимодействия
  • 3.5. Кристаллические решетки
  • Тема 3. Химическая связь
  • 3.6. Комплексные соединения
  • 3.6.1. Определения, составные части и классификация
  • 3.6.2. Равновесие в растворах комплексных соединений
  • 3.6.3. Изомерия комплексных соединений
  • 3.6.4. Химическая связь в комплексных соединениях
  • Тема 4. Элементы термодинамики
  • 4.1. Основные понятия и определения
  • 4.2. Тепловые эффекты химических реакций
  • 4.2.2. Термохимические расчеты.
  • 4.3. Направление химических реакций
  • 4.3.1. Энтропия
  • 4.3.2 Энтальпийный и энтропийный факторы.
  • Тема 4. Химическая термодинамика
  • Тема 5. Химическое равновесие
  • 5.1. Химическое равновесие
  • 5.2. Константа равновесия
  • Например, для обратимой реакции
  • 5.3. Свободная энергия и константа равновесия
  • 5.4. Смещение химического равновесия. Принцип Ле Шателье
  • Напоминаем, что в выражение константы равновесия гетерогенной реакции входят только концентрации газообразных веществ, так как концентрации твердых веществ остаются, как правило, постоянными.
  • Тема 5. Химическое равновесие
  • Тема 6. Химическая кинетика
  • 6.1. Основные понятия и представления
  • 6.2. Зависимость скорости химической реакции
  • 6.3. Зависимость скорости от температуры
  • 6.4. Катализ
  • Тема 6. Химическая кинетика
  • Тема 7. Концентрация растворов
  • 7.1. Способы выражения концентрации растворов
  • Тема 7. Концентрация растворов
  • Тема8. Растворы
  • 8.1. Свойства разбавленных растворов неэлектролитов
  • 8.2. Растворы электролитов
  • 8.2.1. Диссоциация кислот, оснований и солей
  • 8.2.2. Свойства разбавленных растворов электролитов
  • 8.2.3. Ионные реакции
  • 8.2.4. Электролитическая диссоциация воды.
  • 8.2.5. Гидролиз солей
  • Тема 8. Свойства растворов
  • Реакции в растворах электролитов
  • Тема 9. Окислительно-восстановительные реакции
  • 9.1. Уравнивание овр
  • 9.2. Типы окислительно-восстановительных реакций
  • 9.3. Эквиваленты окислителя и восстановителя
  • Тема 9. Окислительно-восстановительные реакции
  • Тема 10 .Электрохимические процессы
  • 10.2. Электролиз
  • 10.3. Количественные законы электролиза
  • 2. При прохождении одного и того же количества электричества через раствор или расплав электролита массы (объемы) веществ, выделившихся на электродах, прямо пропорциональны их химическим эквивалентам.
  • 10.4. Коррозия металлов
  • Тема 10. Электрохимические процессы
  • Контрольные задания
  • 1. Закон эквивалентов. Газовые законы
  • 2. Строение атома
  • Периодическое изменение свойств элементов
  • 3. Химическая связь
  • 4. Энергетика химических реакций
  • Свободная энергия, энтропия. Направление химических реакций
  • Химическое равновесие. Смещение химического равновесия
  • 6. Химическая кинетика
  • 7. Концентрация растворов
  • 8. Свойства разбавленных растворов неэлектролитов
  • Обменные реакции в растворах электролитов
  • Гидролиз солей
  • 9. Окислительно-восстановительные реакции
  • 10. Электрохимические процессы
  • Электролиз
  • Коррозия металлов
  • Комплексные соединения
  • Жесткость воды
  • Химия элементов
  • 1. Цели и задачи учебной дисциплины. . . . . . . . . . . . . . . . . . . 3
  • Тема 2. Строение атома. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .37
  • Тема 3. Химическая связь. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
  • Тема 4. Элементы термодинамики. . . . . . . . . . . . . . . . . . . . . . .75
  • Тема 5. Химическое равновесие. . . . . . . . . . . . . . . . . . . .. . . . . . . 89
  • Тема 6. Химическая кинетика. . . . . . . . . . . . . . . . . . .. . . . . . . . . .97
  • Тема 7. Концентрация растворов. . . . . . . . . . . . . . . . . . . . . . .. . . 104
  • Тема8. Растворы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
  • Тема 9. Окислительно-восстановительные реакции. . . . .126
  • Тема 10. Электрохимические процессы. . . . . .. . . . . . . . . . . . . .132
  • 3. Классификация неорганических соединений

    При классификации необходимо строго придерживаться признаков, по которым она проводится. Простейшим признаком является состав – атомный или элементный. По атомному составу можно выделить одно-, двух- и т.д. атомные (Не; N 2 и СО; О 3 и NO 2 и т.д., соответственно). То же по элементному составу: одноэлементные (Не, N 2); двухэлементные (СО, СО 2) и т.д.. Кроме того – по названию (виду) одного из элементов или радикалов, входящих в состав ряда соединений: оксиды, сульфиды, гидроксиды, сульфаты и т.д.

    По функциональным признакам неорганические соединения подразделяются на классы в зависимости от характерных функций, выполняемых ими в химических ре акциях. Например, широко используется кислотно-основная классификация, связанная с теорией кислот и оснований Аррениуса. В этой теории кислотой называют вещество, которое при диссоциации в воде образует ионы Н + и анионы, основанием – вещество, образующее при этом ионы ОН – и катионы, при взаимодействии кислоты и основания образуется соль и вода. Таким образом, в соответствии с этой теорией выделяют три группы веществ.

    В соответствии с этой же теорией любые сложные вещества могут обладать кислотными, основными или амфотерными свойствами.

    Кислотные свойства проявляет вещество, если оно при растворении в воде образует кислоту, а в реакциях с другими веществами отдаёт Н + , образует анион и присоединяет катион.

    Основные свойства – противоположны кислотным.

    Амфотерность – проявление противоположных свойств одним и тем же веществом (в данном случае и кислотных, и основных).

    В качестве примеров приведём классификации оксидов, гидроксидов и фторидов по этому признаку.

    Сложные вещества

    (неорганические)

    Оксиды Основания Кислоты Соли

    Оксиды - это сложные вещества, в состав которых входят атомы кислорода и какого-либо другого элемента (Э Х О Y ). Степень окисления кислорода в оксидах равна - 2. Например, Fe 2 O 3 - оксид железа (Ш); CгO - оксид хрома (II) или оксид хрома (+2).

    По химическим свойствам оксиды различают:

    ОКСИДЫ

    основные амфотерные кислотные

    образуются металлами Al 2 O 3 ,BeO,ZnO,PbO, образуются неметалла-

    (MgO;CrO;CuOи др)Cr 2 O 3 ,SnO,SnO 2 ,GeO, ми и металлами в

    в степ. окисл. +1, +2GeO 2 ,Sb 2 O 3 ,MnO 2 и др. высш. степ. окисления.

    (CO 2 ;P 2 O 5 ;Mn 2 O 7 .)

    Основными оксидами называются такие, которые при взаимодействии с кислотами образуют катион в составе соли и воду. Соединения этих оксидов с водой относят к классу оснований (например, оксиду Na 2 O соответствует основание NaOH).

    Кислотными оксидами называются такие, которые при взаимодействии с основаниями образуют анион в составе соли и воду. Соединения этих оксидов с водой относят к классу кислот (например, оксиду P 2 O 5 соответствует кислота H 3 PO 4 , а оксиду Cl 2 O 7 - кислота HClO 4).

    К амфотерным оксидам относятся такие, которые взаимодействуют с растворами кислот и оснований с образованием соли и воды. Соединения этих оксидов с водой – гидроксиды – могут иметь как кислотные, так и основные свойства (например, амфотерному оксиду ZnO соответствует основание Zn(OH) 2 и кислота H 2 ZnO 2 – изменением порядка записи атомов в формуле часто подчеркивают функцию соединения).

    При взаимодействии кислотных и основных оксидов между собой образуется соль, катион которой принадлежит основному, а анион – кислотному оксиду.

    Таким образом, характерной особенностью оксидов является способность их к образованию солей. Поэтому такие оксиды относятся к солеобразующим. Наряду с солеобразующими существуют и несолеобразующие, или безразличные, оксиды, которые не образуют кислот и солей. Примером могут служить CO, N 2 O, NO, . SiO .

    Если элемент образует оксиды в нескольких степенях окисления , то амфотерные оксиды разделяют основные и кислотные так, что оксиды, соответствующие низшим степеням окисления являются основными, а высшим - кислотными .

    Например, марганец образует оксиды:

    2 +3 +4 +6 +7

    MnO Mn 2 O 3 MnO 2 MnO 3 Mn 2 O 7

    основные оксиды амфотерный кислотные оксиды

    Для хрома характерны степени окисления: +2, +3 и +6.

    Оксиды CrO Cr 2 O 3 CrO 3

    основной амфотерный кислотный

    Химические свойства оксидов

    основные кислотные

    1. Основные оксиды взаимодействуют 1. Кислотные оксиды взаимодействуют

    с кислотами с образованием соли и воды: с растворимыми основаниями (щелочами)

    CuO+H 2 SO 4 =CuSO 4 +H 2 O.cобразованием соли и воды:

    CO 2 + 2NaOH=Na 2 CO 3 +H 2 O.

    2.Оксиды активных металлов взаимо- 2 Кислотные оксиды взаимодействуют

    действуют с водой с образованием водой с образованием кислоты:

    щелочи: Li 2 O + H 2 O = 2LiOH. P 2 O 5 + 3H 2 O = 2H 3 PO 4 .

    3. Основные и кислотные оксиды взаимодействуют между собой

    с образованием соли: CaO + CO 2 = CaCO 3 .

    амфотерные

    Амфотерные оксиды взаимодействуют как с кислотами, так и с основаниями с образованием соли и воды:

    ZnO+ 2HCl=ZnCl 2 +H 2 O;

    ZnO+ 2NaOH=Na 2 ZnO 2 +H 2 O

    или ZnO + 2NaOH + H 2 O = Na 2 .

    По отношению к растворению в воде оксиды (и многие другие вещества) подразделяют на растворимые и нерастворимые. Растворимые оксиды и другие вещества, образующие кислоты, называются ангидридами соответствующих кислот (SO 3 - ангидрид серной кислоты Н 2 SO 4 ; Cl 2 О 7 - ангидрид НСlO 4).

    Пример 7. Какие из перечисленных ниже элементов образуют кислотные оксиды:

    Na,Zn,Ba,Ti,B? Составьте формулы этих оксидов.

    Решение. Из перечисленных элементовNa,Baявляются типичными металлами, поэтому образуют основные оксиды-Na 2 O,BaO;

    Znобразует амфотерный оксид формула которого-ZnO;

    Бор относится к неметаллам, следовательно, его оксид B 2 O 3 является кислотным.

    Титан относится к переходным металлам и может проявлять степени окисления +2 и +4, следовательно, в высшей степени окисления +4 титан образует кислотный оксид TiO 2 .

    Пример 8. Для указанных оксидов укажите их характер и напишите формулы соответствующих гидроксидов:CaO,V 2 O 5 ,PbO,Li 2 O.

    Решение. СаО-оксид кальция-образован металлом, поэтому имеет основной характер, следовательно, соответствующий ему гидроксид-Са(ОН) 2 ;

    V 2 O 5 -оксид ванадия (V)-образован переходным металлом в высшей степени окисления, поэтому является кислотным оксидом (ангидридом). Соответствующий гидроксид-ванадиевая кислота-HVO 3 ;

    PbO-оксид свинца-является амфотерным оксидом, поэтому ему соответствует как кислотаH 2 PbO 2 ; так и основание-Pb(OH) 2 .

    Li 2 O– оксид лития-является основным оксидом, так как образован металлом и ему соответствует основаниеLiOH.

    Пример 9. Приведите три примера реакций между оксидом элемента 2-го периода и оксидом элемента 4-го периода.

    Решение. Чтобы прошло взаимодействие между двумя оксидами надо, чтобы один из оксидов был основным (или амфотерным) , а другой-кислотным (или амфотерным). Во втором периодеLi 2 O-основной оксид, ВеО-амфотерный, СО 2 иN 2 O 5 -кислотные. В четвертом периоде К 2 О, СаО,FeO-основные, Сr 2 O 3 -амфотерный,As 2 O 5 ,CrO 3 ,SeO 3 -кислотные оксиды. Уравнения:

    СО 2 + К 2 О = К 2 СО 3 ; ВеО + СаО = СаВеО 2 ; 3N 2 O 5 + Сr 2 O 3 = 2Сr(NO 3) 3 .

    Гидроксиды - сложные вещества, в состав которых входят одна или несколько гидроксильных групп – Э(ОН) n , ЭО m (OH) n и др.. Такая форма записи применяется, если хотят подчеркнуть основные свойства гидроксида (NaOH, AlO(OH), SO 2 (OH) 2). Если нужно подчеркнуть кислотные свойства, то формулу записывают в другом порядке – Н n ЭО m (HAlO 2 , H 2 SO 4). Амфотерные основания называют амфолитами.

    "

    Химические вещества можно разделить на две неравные группы: простые и сложные.

    Простые вещества состоят из атомов одного элемента (О 2 , P 4).

    Сложные вещества состоят из атомов двух и более элементов (CaO, H 3 PO 4).

    Простые вещества можно разделить на металлы и неметаллы .

    Металлы – это простые вещества, в которых атомы соединены между собой металлической химической связью. Металлы стремятся отдавать электроны и характеризуются металлическими свойствами (металлический блеск, высокая электро- и теплопроводность, пластичность и др.).

    Неметаллы – это простые вещества, в которых атомы соединены ковалентными (или межмолекулярными) связями. Неметаллы стремятся принимать или притягивать электроны. Неметаллические свойства – это способность принимать или притягивать электроны.

    Все элементы в Периодической системе химических элементов (ПСХЭ) расположены либо в главной подгруппе , либо в побочной . В различных формах короткопериодной ПСХЭ главные и побочные подгруппы расположены по-разному. Есть простой способ, который позволит вам быстро и надежно определять, к акой подгруппе относится элемент. Дело в том, что все элементы второго периода расположены в главной подгруппе. Те элементы, которые расположены в ячейке точно под элементами второго периода (справа или слева), относятся к главной подгруппе. Остальные — к побочной.

    Например , в таблице Менделеева, которая используется на ЕГЭ по химии , элемент номер 32, галлий, расположен в ячейке справа, точно под соответствующим ему элементом второго периода, бором. Следовательно, галлий относится к главной подгруппе. А вот скандий, элемент номер 21, расположен в ячейке слева. Следовательно, скандий относится к побочной подгруппе.

    Неметаллы расположены в главных подгруппах, в правом верхнем угле ПСХЭ . К металлам относятся все элементы побочных подгрупп и элементы главных подгрупп, расположенные в левой нижней части ПСХЭ . Разделяют металлы и неметаллы обычно, проводя условную линию от бериллия до астата. На рисунке показано точное разделение на металлы и неметаллы. Закрашены цветом неметаллы.

    Основные классы сложных веществ — это оксиды , гидроксиды , соли .

    Оксиды — это сложные вещества, которые состоят из атомов двух элементов, один из которых кислород, имеющий степень окисления -2.

    В зависимости от второго элемента оксиды проявляют разные химические свойства. Некоторым оксидам соответствуют гидроксиды (солеобразующие оксиды), а некоторым нет (несолеобразующие).

    Солеобразующие оксиды делят на основные, амфотерные и кислотные.

    Основные оксиды — это оксиды, которые проявляют характерные основные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +1 и +2 . Например , оксид лития Li 2 O, оксид железа (II) FeO.

    Кислотные оксиды — это оксиды, которые проявляют кислотные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7 , а также атомами неметаллов с любой степенью окисления . Например , оксид хлора (I) Cl 2 O, оксид хрома (VI) CrO 3 .

    Амфотерные оксиды — это оксиды, которые проявляют и основные, и кислотные свойства. Это оксиды металлов со степенью окисления +3 и +4 , а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO .

    Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N 2 O и SiO .

    Встречаются и оксиды, похожие на соли, т.е. солеобразные (двойные).

    Двойные оксиды — это некоторые оксиды, образованные элементом с разными степенями окисления. Например , магнетит (магнитный железняк) FeO·Fe 2 O 3 .


    Алгоритм определения типа оксида: сначала определяем, какой элемент образует оксид – металл или неметалл . Если это металл, то определяем степень окисления, затем определяем тип оксида. Если это неметалл, то оксид кислотный (если это не исключение).

    Гидроксиды — это сложные вещества, в составе которых есть группа Э-O-H. К гидроксидам относятся основания, амфотерные гидроксиды, и кислородсодержащие кислоты.

    Каждому солеобразующему оксиду соответствует гидроксид:

    основному оксиду соответствует гидроксид основание ,

    кислотному оксиду соответствует гидроксид кислота ,

    амфотерному оксиду соответствует амфотерный гидроксид .

    Например , оксид хрома (II) CrO — основный, ему соответствует гидроксид основание. Формулу гидроксида легко получить, просто добавив к металлу гидроксидную группу OH: Cr(OH) 2 .

    Оксид хрома (VI) — кислотный, ему соответствует гидроксид кислота H 2 CrO 4, и кислотный остаток хромат-ион CrO 4 2- .

    Если все индексы кратны 2, то мы делим все индексы на 2.

    Например : N 2 O 5 + H 2 O → H 2 N 2 O 6 , делим на 2, получаем HNO 3 . Так получаем мета-формулу кислоты. Если мы добавим еще одну молекулу воды, то получим орто-формулу кислоты.

    Например : оксид P 2 O 5 , мета-форма: HPO 3 . Добавляем воду, орто-форма: H 3 PO 4 . Орто-форма устойчива у фосфора и мышьяка.

    Оксид хрома (III) — Cr 2 O 3 — амфотерный, ему соответствует амфотерный гидроксид, который может выступать и как основание, и как кислота: Cr(OH) 3 = HCrO 2 , кислотный остаток хромит: CrO 2 — .

    Взаимосвязь оксидов и гидроксидов:

    Основания (основные гидроксиды) — это сложные вещества, которые при диссоциации в водных растворах в качестве анионов (отрицательных ионов) образуют только гидроксид-ионы OH — .

    Основания можно разделить на растворимые в воде (щелочи ), нерастворимые в воде, и самопроизвольно разлагающиеся .

    К разлагающимся в воде (неустойчивым) основаниям относят гидроксид аммония, гидроксид серебра (I), гидроксид меди (I). В водном растворе такие соединения практически необратимо распадаются:

    NH 4 OH → NH 3 + H 2 O

    2AgOH → Ag 2 O + H 2 O

    2CuOH → Cu 2 O + H 2 O

    Основания с одной группой ОН – однокислотные (например, NaOH ) , с двумя – двухкислотные (Ca(OH) 2) и с тремя – трехкислотные (Fe(OH) 3) .

    Кислоты – это сложные вещества, которые при диссоциации в водных растворах образуют в качестве катионов только ионы гидроксония H 3 O + (H +). Кислоты состоят из водорода H + и кислотного остатка.

    По числу атомов водорода, которые можно заместить на металлы, кислоты разделяют на одноосновные (HNO 3), двухосновные (H 2 SO 4), трехосновные (H 3 PO 4) и т.д.

    Кислоты также можно разделить на сильные и слабые.

    Сильные кислоты. К ним относятся:

    • Бескислородные кислоты: HCl, HBr, HI . Остальные бескислородные кислоты, как правило, слабые.
    • Некоторые высшие кислородсодержащие кислоты: H 2 SO 4 , HNO 3 , HClO 4 и др.

    Слабые кислоты . К ним относятся:

    • Слабые и растворимые кислоты : это H 3 PO 4 , CH 3 COOH , HF и др.
    • Летучие или неустойчивые кислоты : H 2 S — газ; H 2 CO 3 H 2 CO 3 → Н 2 О + СО 2 ; H 2 SO 3 — распадается на воду и оксид: H 2 SO 3 → H 2 O+ SО 2 .
    • Нерастворимые в воде кислоты : H 2 SiO 3 , H 3 BO 3 и другие.

    Определить, сильная кислота перед вами, или слабая, позволяет простой прием. Мы вычитаем из числа атомов O в кислоте число атомов H. Если получаем число 2 или 3, то кислота сильная . Если 1 или 0 — то кислота слабая .

    Соли – сложные вещества, состоящие из катиона металла (или металлоподобных катионов, например, иона аммония NH 4 +) и аниона кислотного остатка. Также солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.

    Если рассматривать соли, как продукты взаимодействия кислоты и основания , то соли делят на средние , кислые и основные .

    Средние соли – продукты полного замещения катионов водорода в кислоте на катионы металла (например , Na 2 CO 3 , K 3 PO 4 ).

    Кислые соли – продукты неполного замещения катионов водорода в кислоте на катионы металлов (например , NaHCO 3 , K 2 HPO 4 ).

    Основные соли – продукты неполного замещения гидроксогрупп основания на анионы кислотных остатков кислоты (например , малахит (CuOH) 2 CO 3 ).

    По числу катионов и анионов соли разделяют на:

    Простые соли – состоящие из катиона одного типа и аниона одного типа (например , хлорид кальция CaCl 2 ).

    Двойные соли – это соли, состоящие из двух или более разных катионов и аниона одного типа (например , алюмокалиевые квасцы – KAl(SO 4) 2 ).

    Смешанные соли – это соли, состоящие из катиона одного типа и двух или более анионов разного типа (например , хлорид-гипохлорит кальция Ca(OCl)Cl ).

    По структурным особенностям выделяют также гидратные соли и комплексные соли.

    Гидратные соли (кристаллогидраты ) – это такие соли, в состав которых входят молекулы кристаллизационной воды (например , декагидрат сульфата натрия Na 2 SO 4 ·10 H 2 O ).

    Комплексные соли – это соли, содержащие комплексный катион или комплексный анион (K 3 , (OH) 2 ).

    Помимо основных классов неорганических соединений, существует большое количество других. Например, бинарные соединения элементов с водородом.

    Водородные соединения – это сложные вещества, состоящие из двух элементов, один из которых водород. Водород образует солеобразные гидриды и летучие водородные соединения.

    Солеобразные гидриды ЭН х – это соединения металлов IA, IIA групп и алюминия с водородом. Степень окисления водорода равна -1. Например , гидрид натрия NaH .

    Летучие водородные соединения Н х Э – это соединения неметаллов с водородом, в которых степень окисления водорода равна +1. Например , аммиак NH 3 , фосфин PH 3 .

    Ежедневно человек взаимодействует с большим количеством предметов. Они изготовлены из разных материалов, имеют свою структуру и состав. Все, что окружает человека можно разделить на органическое и неорганическое. В статье рассмотрим, что представляют собой такие вещества, приведем примеры. Также определим, какие встречаются неорганические вещества в биологии.

    Описание

    Неорганическими называются такие вещества, в составе которых нет углерода. Они противоположны органическим. Также к этой группе относят несколько углеродосодержащих соединений, например:

    • цианиды;
    • оксиды углерода;
    • карбонаты;
    • карбиды и другие.
    • вода;
    • разные кислоты (соляная, азотная, серная);
    • соль;
    • аммиак;
    • углекислый газ;
    • металлы и неметаллы.

    Неорганическая группа отличается отсутствием углеродного скелета, который характерен для органических веществ. по составу принято делить на простые и сложные. Простые вещества составляют немногочисленную группу. Всего их насчитывается примерно 400.

    Простые неорганические соединения: металлы

    Металлы - простые атомов которых основывается на металлической связи. Эти элементы имеют характерные металлические свойства: теплопроводность, электропроводность, пластичность, блеск и другие. Всего в этой группе выделяют 96 элементов. К ним относятся:

    • щелочные металлы: литий, натрий, калий;
    • щелочноземельные металлы: магний, стронций, кальций;
    • медь, серебро, золото;
    • легкие металлы: алюминий, олово, свинец;
    • полуметаллы: полоний, московий, нихоний;
    • лантаноиды и лантан: скандий, иттрий;
    • актиноиды и актиний: уран, нептуний, плутоний.

    В основном в природе металлы встречаются в виде руды и соединений. Чтобы получить чистый металл без примесей, проводится его очистка. При необходимости возможно проведение легирования или другой обработки. Этим занимается специальная наука - металлургия. Она подразделяется на черную и цветную.

    Простые неорганические соединения: неметаллы

    Неметаллы - химические элементы, которые не обладают металлическими свойствами. Примеры неорганических веществ:

    • вода;
    • азот;
    • сера;
    • кислород и другие.

    Неметаллы отличаются большим числом электронов на их атома. Это обуславливает некоторые свойства: повышается способность присоединять дополнительные электроны, проявляется более высокая окислительная активность.

    В природе можно встретить неметаллы в свободном состоянии: кислород, хлор, А также твердые формы: йод, фосфор, кремний, селен.

    Некоторые неметаллы имеют отличительное свойство - аллотропию. То есть они могут существовать в различных модификациях и формах. Например:

    • газообразный кислород имеет модификации: кислород и озон;
    • твердый углерод может существовать в таких формах: алмаз, графит, стеклоуглерод и другие.

    Сложные неорганические соединения

    Эта группа веществ более многочисленна. Сложные соединения отличаются наличием в составе вещества нескольких химических элементов.

    Рассмотрим подробнее сложные неорганические вещества. Примеры и классификация их представлены ниже в статье.

    1. Оксиды - соединения, одним их элементов которых является кислород. В группу входят:

    • несолеобразующие (например, азота);
    • солеобразующие оксиды (например, оксид натрия, оксид цинка).

    2. Кислоты - вещества, в состав которых входят ионы водорода и кислотные остатки. Например, азотная сероводород.

    3. Гидроксиды - соединения, в составе которых присутствует группа -ОН. Классификация:

    • основания - растворимые и нерастворимые щелочи - гидроксид меди, гидроксид натрия;
    • кислородосодержащие кислоты - диводород триоксокарбонат, водород триоксонитрат;
    • амфотерные - гидроксид хрома, гидроксид меди.

    4. Соли - вещества, в составе которых есть ионы металла и кислотные остатки. Классификация:

    • средние: хлорид натрия, сульфид железа;
    • кислые: гидрокарбонат натрия, гидросульфаты;
    • основные: нитрат дигидроксохрома, нитрат гидроксохрома;
    • комплексные: тетрагидроксоцинкат натрия, тетрахлороплатинат калия;
    • двойные: алюмокалиевые квасцы;
    • смешанные: сульфат алюминия калия, хлорид меди калия.

    5. Бинарные соединения - вещества, состоящие из двух химических элементов:

    • бескислородные кислоты;
    • бескислородные соли и другие.

    Неорганические соединения, содержащие углерод

    Такие вещества традиционно относятся к группе неорганических. Примеры веществ:

    • Карбонаты - эфиры и соли угольной кислоты - кальцит, доломит.
    • Карбиды - соединения неметаллов и металлов с углеродом - карбид бериллия, карбид кальция.
    • Цианиды - соли цианистоводородной кислоты - цианид натрия.
    • Оксиды углерода - бинарное соединение углерода и кислорода - угарный и углекислый газы.
    • Цианаты - являются производными от циановой кислоты - фульминовая кислота, изоциановая кислота.
    • Карбонильные металлы - комплекс металла и монооксида углерода - карбонил никеля.

    Все рассмотренные вещества отличаются индивидуальными химическими и физическими свойствами. В общем виде можно выделить отличительные черты каждого класса неорганических веществ:

    1. Простые металлы:

    • высокая тепло- и электропроводность;
    • металлический блеск;
    • отсутствие прозрачности;
    • прочность и пластичность;
    • при комнатной температуре сохраняют твердость и форму (кроме ртути).

    2. Простые неметаллы:

    • простые неметаллы могут быть в газообразном состоянии: водород, кислород, хлор;
    • в жидком состоянии встречается бром;
    • твердые неметаллы имеют немолекулярное состояние и могут образовывать кристаллы: алмаз, кремний, графит.

    3. Сложные вещества:

    • оксиды: вступают в реакцию с водой, кислотами и кислотными оксидами;
    • кислоты: вступают в реакцию с водой, и щелочами;
    • амфотерные оксиды: могут вступать в реакции с кислотными оксидами и основаниями;
    • гидроксиды: растворяются в воде, имеют широкий диапазон температур плавления, могут менять цвет при взаимодействии с щелочами.

    Клетка любого живого организма состоит из множества компонентов. Некоторыми из них являются неорганические соединения:

    • Вода. Например, количество воды в клетке составляет от 65 до 95%. Она необходима для осуществления химических реакций, перемещения компонентов, процесса терморегуляции. Также именно вода определяет объем клетки и степень ее упругости.
    • Минеральные соли. Могут присутствовать в организме как в растворенном виде, так и в нерастворенном. Важную роль в процессах клетки играют катионы: калий, натрий, кальций, магний - и анионы: хлор, гидрокарбонаты, суперфосфат. Минералы необходимы для поддержания осмотического равновесия, регуляции биохимических и физических процессов, образования нервных импульсов, поддержания уровня свертываемости крови и многих других реакций.

    Для поддержания жизнедеятельности важны не только неорганические вещества клетки. Органические компоненты занимают 20-30 % ее объема.

    Классификация:

    • простые органические вещества: глюкоза, аминокислоты, жирные кислоты;
    • сложные органические вещества: белки, нуклеиновые кислоты, липиды, полисахариды.

    Органические компоненты необходимы для выполнения защитной, энергетической функции клетки, они служат источником энергии для клеточной активности и запасают питательные вещества, проводят синтез белков, передают наследственную информацию.

    В статье были рассмотрены сущность и примеры неорганических веществ, их роль в составе клетки. Можно сказать, что существование живых организмов было бы невозможным без групп органических и неорганических соединений. Они важны в каждой сфере человеческой жизни, а также в существовании каждого организма.