Ускорений точек плоской фигуры. Определение ускорений точек плоской фигуры при помощи мцу Определение ускорения произвольной точки плоской фигуры

Согласно рассмотренному ранее, движение плоской фигуры складывается из поступательного и вращательного движений. Покажем, что ускорение любой точки плоской фигуры складывается геометрически из ускорений, которые точка получает в каждом из этих движений.

Положение точки В (согласно рис. 35) можно определить по формуле:

где – радиус-вектор полюса А, – вектор, определяющий положение точки В относительно полюса А.

Согласно теореме о скоростях точек плоской фигуры:

Очевидно, что ускорение точки В будет равно:

где – ускорение полюса А. Т.к. и исходя из свойств плоской фигуры, можно утверждать, что –ускорение точки В в ее вращательном движении вокруг полюса А.

Ускорение любой точки плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки, принятой за полюс, и ускорения этой точки в ее врщении вместе с фигурой вокруг полюса:

Следовательно, ускорение некоторой точки В плоской фигуры изображается диагональю векторного параллелограмма (построенного при точке В), в котором его сторонами являются и (рис. 40).

Рис. 40. Построение вектора ускорения точки В

При решении задач вектор раскладывают на составляющие:

где – касательная составляющая ускорения (и направлен в сторону вращения на рис. 41, 42);

– нормальная составляющая ускорения (всегда направлен из точки В к полюсу А).

Модуль полного ускорения определяют по формуле:

Рис. 41. К доказательству теоремы об ускорениях точек плоской фигуры (случай ускоренного вращения)Рис. 42. К доказательству теоремы об ускорениях точек плоской фигуры (случай замедленного вращения)

При графическом определении ускорения точки В удобно пользоваться углом, тангенс которого находят из выражения:

Если известны траектории полюса A и точки B, ускорение которой надо найти, то ускорения этих точек для удобства вычисления раскладывают на нормальные и касательные составляющие. Тогда теорема об ускорениях точек плоской фигуры примет развернутый вид:

Таким образом, для определения ускорения произвольной точки В необходимо знать ускорение какой-либо точки плоской фигуры А, принимаемой за полюс, угловую скорость  плоской фигуры и ее угловое ускорение  в данный момент времени.

Модуль ускорения точки В (или любой другой точки плоской фигуры) можно найти следующими способами:

  • графически;
  • аналитически (способом проекций): ,

где аВх, аВу – проекции ускорения точки В на заранее выбранные оси х и у прямоугольной системы координат.

Учебное пособие для студентов технических вузов

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Рабочая программа. Наименование учебного предмета: Математика 1 класс

Количество часов по учебному плану всего: 132 часа в год; в неделю 4 часа. Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта НОО Программа разработана на основе Федерального государственного образовательного стандарта начального общего образования

Гражданское право

Готовые ответы по гражданском праву. ГК РФ - гражданский кодекс Российской Федерации. Вопросы юридический и физических лиц. Сделки договоры и договоренности, какие сделки считаются действительными, а какие недействительными; их регулирование законом.

Рабочая программа учебной дисциплины «Административное право»

Рабочая программа предназначена для преподавания дисциплины базовой (общепрофессиональной) части профессионального цикла студентам очной формы обучения по направлению подготовки «Юриспруденция»

Коммерческая деятельность в рыночной экономике

Коммерческая деятельность в рыночной экономике осуществляют не только отдельные предприниматели и их объединения, но и государство в лице своих органов и специализированных предприятий, которые имеют статус юридического лица.

Глобальные проблемы человечества

Глобальные проблемы человечества – это совокупность социально-природных проблем, от решения которых зависит социальный прогресс человечества и сохранение цивилизации. Глобальные проблемы угрожают существованию человечества

Мгновенный центр скоростей.

Мгнове́нный центр скоросте́й - при плоскопараллельном движении точка, обладающая следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело.

Для того, чтобы определить положение мгновенного центра скоростей, необходимо знать направления скоростей любых двух различных точек тела, скорости которых не параллельны. Тогда для определения положения мгновенного центра скоростей необходимо провести перпендикуляры к прямым, параллельным линейным скоростям выбранных точек тела. В точке пересечения этих перпендикуляров и будет находиться мгновенный центр скоростей.

В том случае, если векторы линейных скоростей двух различных точек тела параллельны друг другу, и отрезок, соединяющий эти точки, не перпендикулярен векторам этих скоростей, то перпендикуляры к этим векторам также параллельны. В этом случае говорят, что мгновенный центр скоростей находится в бесконечности, и тело движетсямгновенно поступательно.

Если известны скорости двух точек, и эти скорости параллельны друг другу, и кроме того, указанные точки лежат на прямой, перпендикулярной скоростям, то положение мгновенного центра скоростей определяется так, как показано на рис. 2.

Положение мгновенного центра скоростей в общем случае не совпадает с положением мгновенного центра ускорений. Однако в некоторых случаях, например, при чисто вращательном движении, положения этих двух точек могут совпадать.

21.Определение ускорений точек тела.Метод полюса.Понятие о мгновенном центре ускорений .

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А , а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A . следовательно,

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А , принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление с помощью параллелограмма, изображен­ного на рис.23, усложняет расчет, так как предварительно надо бу­дет находить значение угла , а затем - угла между векторами и , Поэтому при решении задач удобнее вектор заменять его касательной и нормальной составляющими и пред­ставить в виде



При этом вектор направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор всегда направлен от точки М к полюсу А (рис.42). Численно же

Если полюс А движется не прямолинейно, то его ускорение мо­жно тоже представить как сумму касательной и нормальной составляющих, тогда

Рис.41 Рис.42

Наконец, когда точка М движется криволинейно и ее траекто­рия известна, то можно заменить суммой .

Рис.40

Рис.39

Рис.38

Свойства плана скоростей.

а) Стороны треугольников на плане скоростей перпендику­лярны соответствующим прямым на плоскости тела.

Действительно, . Но на плане скоростей . Значит причём перпендикулярна АВ , по­этому и . Точно так же и .

б) Стороны плана скоростей пропорциональны соответствующим от­резкам прямых на плоскости тела.

Так как , то отсюда и следует, что стороны плана скоростей пропорциональны отрезкам прямых на плоскости тела.

Объединив оба свойства, можно сделать вывод, что план скоростей подобен соответствующей фигуре на теле и повёрнут относительно её на 90˚ по направлению вращения. Эти свойства плана скоростей позволяют определять скорости точек тела графическим способом.

Пример 10. На рисунке 39 в масштабе изображён механизм. Известна угловая скорость звена ОА .

Чтобы построить план ско­ростей должна быть известна скорость какой-нибудь одной точки и хотя бы направление вектора скорости другой. В на­шем примере можно определить скорость точки А : и направление её вектора .

Откладываем (рис. 40) из точки о в масштабе Известно направление вектора скорости ползуна В – горизонтальное. Проводим на плане скоростей из точки О прямую I по направлению скорости , на которой должна находиться точка b , определяющая скорость этой точки В . Так как стороны плана скоростей перпендикулярны соответствующим звеньям механизма, то из точки а проводим прямую перпендикулярно АВ до пересечения с прямой I . Точка пересечения определит точку b , а значит и скорость точки В : . По второму свойству плана скоростей его стороны подобны звеньям механизма. Точка С делит АВ пополам, значит и с должна делить аb пополам. Точка с определит на плане скоростей величину и направление скорости (если с соединить с точкой О ).

Скорость точки Е равна нулю, поэтому точка е на плане скоростей совпадает с точкой О .

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А , а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A . следовательно,

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).составляющими и пред­ставить в виде

Где – ускорение точки А , принятой за полюс;

– ускорение т. В во вращательном движении вокруг полюса А ;

– соответственно касательная и нормальная составляющие
(рис. 3.25). Причем

(3.45)

где a – угол наклона относительного ускорения к отрезку АВ .

В случаях, когда w и e известны, формула (3.44) непосредственно используется для определения ускорений точек плоской фигуры. Однако во многих случаях зависимость угловой скорости от времени неизвестно, поэтому и угловое ускорение неизвестно. Кроме того, линия действия вектора ускорения одной из точек плоской фигуры известно. В этих случаях задача решается проектированием выражения (3.44) на соответствующим образом выбранные оси. Третий подход к определению ускорений точек плоской фигуры основан на использовании мгновенного центра ускорений (МЦУ).

В каждый момент времени движения плоской фигуры в своей плоскости, если w и e не равны нулю одновременно, имеется единственная точка этой фигуры, ускорение которой равно нулю. Эту точку называют мгновенным центром ускорений. МЦУ лежит на прямой, проведенной под углом a к ускорению точки, выбранной в качестве полюса, на расстоянии от которого

(3.46)

При этом угол a надо отложить от ускорения полюса в направлении дуговой стрелки углового ускорения e (рис. 3.26). В различные моменты времени МЦУ лежит в разных точках плоской фигуры. В общем случае МЦУ не совпадает с МЦС. При определении ускорений точек плоской фигуры МЦУ используется в качестве полюса. Тогда по формуле (3.44)

так как и следовательно

(4.48)

Ускорение направлено под углом a к отрезку Bq , соединяющему точку В с МЦУ в сторону дуговой стрелки углового ускорения e (рис. 3.26). Для точки С аналогично.

(3.49)

Из формулы (3.48), (3.49) имеем

Таким образом, ускорение точек фигуры при плоском движении можно определить так же как при чистом её вращении вокруг МЦУ.

Определение МЦУ.

1 В общем случае, когда w и e известны и не равны нулю, для угла a имеем

МЦУ лежит на пересечении прямых линий, проведенных к ускорениям точек фигуры под одним и тем же углом a, причем угол a нужно откладывать от ускорений точек в направлении дуговой стрелки углового ускорения (рис. 3.26).

Рис. 3.26
Рис. 3.27
2 В случае w¹0, e = 0, и, следовательно, a = 0. МЦУ лежит в точке пересечения прямых линий, по которым направлены ускорения точек плоской фигуры (рис. 3.27)

3 В случае w = 0, e ¹ 0, МЦУ лежит в точке пересечения перпендикуляров, восстановленных в точках А , В , С к соответствующим векторам ускорений (рис. 3.28).

Рис. 3.28

Определение углового ускорения при плоском движении

1 Если известен угол поворота или угловая скорость в зависимости от времени, то угловое ускорение определяется по известной формуле

2 Если в указанной выше формуле , – расстояние от точки А плоской фигуры до МЦС, величина постоянная, то угловое ускорение определяется путем дифференцирования угловой скорости по времени

(3.52)

где – касательно ускорение точки А .

3 Иногда угловое ускорение удается найти путем проектирования соотношения типа (3.44) на соответствующим образом выбранные оси координат. При этом ускорение т. А , выбранной в качестве полюса, известно, известна также линия действия ускорения другой т.В фигуры. Из таким образом полученной системы уравнений определяется касательное ускорение Тогда e вычисляется по известной формуле .

Задача КЗ

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна В или Е (рис. К3.0 – К3.7) или из стержней 1, 2, 3 и ползунов В и E (рис. К3.8, К3.9), соединенных друг с другом и с неподвижными опорами O 1 , О 2 шарнирами; точка D находится в середине стержня АВ. Длины стержней равны соответственно l 1 = 0,4 м, l 2 = 1,2 м,
l 3 = 1,4 м, l 4 = 0,6 м. Положение механизма определяется углами a, b, g, j, q. Значения этих углов и других заданных величин указаны в табл. К3а (для рис. 0 – 4) или в табл. К3б (для рис. 5 – 9); при этом в табл. К3а w 1 и w 2 – величины постоянные.



Рис. К3.0
Рис. К3.1

Рис. К3.2
Рис. К3.3

Рис. К3.5
Рис. К3.4

Рис. К3.6
Рис. К3.7

Рис. К3.8
Рис. К3.9

Определить величины, указанные в таблицах в столбцах «Найти». Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол g на рис. 8 следует отложить от DB по ходу часовой стрелки, а на рис. 9 – против хода часовой стрелки и т.д.).

Построение чертежа начинать со стержня, направление которого определяется углом a; ползун с направляющими для большей наглядности изобразить так, как в примере К3 (см. рис. К3б).

Заданные угловую скорость и угловое ускорение считать направленными против часовой стрелки, а заданные скорость и ускорение a B – от точки В к b (на рис. 5 – 9).

Указания. Задача К3 – на исследование плоскопараллельного движения твердого тела. При ее решения для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности.

При определении ускорений точек механизма исходить из векторного равенства где А – точка, ускорение которой или задано, или непосредственно определяется по условиям задачи (если точка А движется по дуге окружности, то ); В –точка, ускорение которой нужно определить (о случае, когда точка В тоже движется по дуге окружности, см. примечание в конце рассмотренного ниже примера К3).

Пример К3 .

Механизм (рис. К3а) состоит из стержней 1, 2, 3, 4 и ползуна В, соединенных друг с другом и с неподвижными опорами O 1 и О 2 шарнирами.

Дано: a = 60°, b = 150°, g = 90°, j = 30°, q = 30°, AD = DB, l 1 = 0,4 м, l 2 = 1,2м, l 3 = 1,4 м, w 1 = 2 с –1 , e 1 = 7 с –2 (направления w 1 и e 1 против хода часовой стрелки).

Определить: v B , v E , w 2 , a B , e 3 .

1 Строим положение механизма в соответствии с заданными углами
(рис. К3б, на этом рисунке изображаем все векторы скоростей).

Рис. К3б

2 Определяем v B . Точка В принадлежит стержню АВ. Чтобы найти v B , надо знать скорость какой-нибудь другой точки этого стержня и направление По данным задачи, учитывая направление w 1 можем определить численно

v A = w 1 ×l 1 = 0,8 м/с; (1)

Направление найдем, учтя, что точка В принадлежит одновременно ползуну, движущемуся вдоль направляющих поступательно. Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня АВ) па прямую, соединяющую эти точки (прямая АВ ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим

v B ×cos 30° = v A ×cos 60° и v B = 0,46 м/с (2)

3 Определяем Точка Е принадлежит стержню DE. Следовательно, по аналогии с предыдущим, чтобы определить надо сначала найти скорость точки D, принадлежащей одновременно стержню АВ. Для этого, зная строим мгновенный центр скоростей (МЦС) стержня АВ ; это точка С 3 , лежащая на пересечении перпендикуляров к восставленных из точек А и В (к перпендикулярен стержень 1). АВ вокруг МЦС С 3 . Вектор перпендикулярен отрезку C 3 D , соединяющему точки D и С 3 , и направлен в сторону поворота. Величину v D найдем из пропорции

Чтобы вычислить C 3 D и С 3 В, заметим, что DAC 3 B – прямоугольный, так как острые углы в нем равны 30° и 60°, и что С 3 В = AB×sin 30° = AB×0,5 = BD. Тогда DBC 3 D является равносторонним и С 3 В = C 3 D. В результате равенство (3) дает

v D = v B = 0,46 м/с; (4)

Так как точка Е принадлежит одновременно стержню O 2 E , вращающемуся вокруг O 2 ­ , то Тогда, восставляя из точек Е и D перпендикуляры к скоростям , построим МЦС C 2 стержня DE. По направлению вектора определяем направление поворота стержня DE вокруг центра С 2 . Вектор направлен в сторону поворота этого стержня. Из рис. К3б видно, что откуда С 2 E = С 2 D. Составив теперь пропорцию, найдем, что

V E = v D = 0,46 м/с. (5)

4 Определяем w 2 . Так как МЦС стержня 2 известен (точка С 2 ) и
C 2 D = l 2 /(2cos 30°) = 0,69 м, то

(6)

5 Определяем (рис. К3в, на котором изображаем все векторы ускорений). Точка В принадлежит стержню АВ. Чтобы найти , надо знать ускорение какой-нибудь другой точки стержня АВ и траекторию точки В. По данным задачи можем определить где численно

(7) (7)

Рис. К3в
Вектор направлен вдоль AO 1 , а – перпендикулярно АО 1: изображаем эти векторы на чертеже (см. рис. К3в). Так как точка В одновременно принадлежит ползуну, то вектор параллелен направляющим ползуна. Изображаем вектор на чертеже, полагая, что он направлен в ту же сторону, что и . Для определения воспользуемся равенством

Изображаем на чертеже векторы (вдоль ВА от В к А )и (в любую сторону перпендикулярно ВА) ; численно . Найдя w 3 с помощью построенного МЦС С 3 стержня 3, получим

Таким образом, у величин, входящих в равенство (8), неизвестны только числовые значения а В и их можно найти, спроектировав обе части равенства (8) на какие-нибудь две оси.

Чтобы определить а В, спроектируем обе части равенства (8) на направление ВА (ось х), перпендикулярное неизвестному вектору Тогда получим

Ускорение любой точки движущейся плоской фигуры можно определить двумя способами: 1) как геометрическую сумму ускорений этой точки в поступательном и вращательном движениях фигуры и 2) как ускорение этой точки во вращательном движении вокруг мгновенного центра ускорений, причем мгновенным центром ускорений называется такая точка Плоской фигуры, ускорение которой в данный момент равно нулю.

Если известны ускорение некоторой точки А фигуры (ускорение полюса), а также угловая скорость и угловое ускорение фигуры, то ускорение любой ее точки В определяется по формуле

Здесь вектор - ускорение точки В во вращательном движении вокруг полюса касательная и нормальная составляющие этого ускорения.

Следовательно,

при этом вектор направлен вдоль АВ (от точки В к точке А), а вектор перпендикулярен к АВ.

Угол между векторами и ВА определяется по формуле

при этом в случае ускоренного вращения фигуры векторы (вращательная скорость точки В вокруг полюса А) лежат по одну сторону от прямой АВ, в противном случае эти векторы расположены по разные стороны от этой прямой.

Если угловая скорость фигуры постоянна, т. е. , то , а следовательно, и , т. е. вектор совпадает по направлению с вектором ВА. Если же в данный момент , то и вектор перпендикулярен к вектору ВА.

На основании равенства (78) ускорение точки В можно найти построением многоугольника ускорений и применением затем метода проекций, спроектировав векторное равенство (78) на выбранные оси.

Если мгновенный центр ускорений Q принять за полюс, то для ускорения произвольно выбранной точки М фигуры имеем:

но , а потому

т. e. ускорение любой точки М плоской фигуры определяется как ускорение во вращательном движении вокруг мгновенного центра ускорений (рис. 108).

При этом ускорение направлено по прямой MQ от точки М к центру Q, а ускорение перпендикулярно к MQ и

Ускорение точки М равно по модулю

и составит с направлением MQ угол

(84)

Отсюда следует: 1) угол а для всех точек фигуры имеет в данный момент одно и то же значение; 2) ускорения точек плоской фигуры пропорциональны расстояниям этих точек от мгновенного центра ускорений.

Чтобы определить для данного момента положение мгновенного центра ускорений нужно:

1) найти ускорение какой-либо точки А фигуры [обычно при решении задач рассматриваемого типа ускорение одной точки фигуры (механизма) или задается, или его можно легко найти];

2) повернуть полупрямую, по которой направлен вектор , вокруг точки А на острый угол или в направлении вращения фигуры, если это вращение является ускоренным, или в противоположном направлении в противном случае;

3) на полученной после этого поворота полупрямой отложить отрезок

Отметим два частных случая:

1) пусть , тогда , следовательно, ускорение любой точки М движущейся фигуры направлено , т. е. проходит через центр Q. Поэтому мгновенный центр ускорений Q в этом случае можно найти как точку пересечения прямых, по которым направлены ускорения двух каких-либо точек фигуры;

2) пусть , тогда следовательно, ускорение любой точки М фигуры перпендикулярно к MQ. Поэтому мгновенный центр ускорений Q в этом случае можно найти как точку пересечения перпендикуляров, восставленных из двух каких-либо точек движущейся фигуры к ускорениям этих точек.

Задачи, относящиеся к этому параграфу, можно разделить на следующие четыре группы:

1) задачи, в которых заданы векторы скорости и ускорения одной точки и прямолинейная траектория второй точки плоской фигуры, ускорение которой требуется найти (задачи 566-571, 573-579);

2) задачи, в которых заданы векторы скорости и ускорения одной точки и криволинейная траектория второй точки плоской фигуры, ускорение которой требуется найти (задачи 572, 573, 575);

3) задачи, в которых требуется определить ускорение точки катящегося без скольжения колеса (задачи 556-563);

4) задачи, в которых заданы ускорения двух точек плоской фигуры, а требуется определить ускорение третьей точки этой фигуры (задачи 564, 574, 576-578).