Подсоединение электродвигателя звездой и треугольником. Подключение обмоток электродвигателя по схеме «звезда» и «треугольник

Трехфазный электродвигатель - это электрическая машина, предназначенная для работы в переменного тока. Такой двигатель состоит из статора и ротора. Статор имеет три обмотки, сдвинутые на сто двадцать градусов. При появлении в цепи обмоток трехфазного напряжения на полюсах образуются магнитные потоки, происходит вращение ротора. Электродвигатели бывают синхронными и асинхронными. Трехфазные получили широкое применение в промышленности и в быту. Такие двигатели бывают односкоростными, в таком случае обмотки двигателя соединяют по схеме «звезда» или «треугольник», и многоскоростными. Последние агрегаты переключаемые, в таком случае происходит переход с одной схемы подключения на другую.

Трехфазные электродвигатели разделяют по схемам соединения обмоток. Существует две схемы подключения - соединение «звездой» и «треугольником». Подключение обмоток двигателя по типу «звезда» представляет собой соединение концов обмоток двигателя в одну точку (нулевой узел): получается дополнительный вывод - нулевой. Свободные концы подключаются к фазам сети электрического тока 380 В. Внешне такое подключение напоминает трехконечную звезду. На фото показана следующая схема: соединение «звездой» и «треугольником».Подключение обмоток электродвигателя по типу «треугольник» представляет собой обмоток: конец первой соединяют с началом второй обмотки, конец второй - с началом третьей, а конец третьей с началом первой. На узлы соединения обмоток подается трехфазное напряжение. При таком подключении обмоток нулевой вывод отсутствует. Внешне оно напоминает треугольник.

Соединение «звездой» и «треугольником» одинаково распространены, они не имеют значительных отличий. Для соединения обмоток по типу «звезда» (при работе двигателя в номинальном режиме) линейное напряжение должно быть больше, чем при подключении по типу «треугольник». Поэтому в характеристиках трехфазного двигателя указывают следующим образом: 220/380 В либо 127/220 В. В случае необходимости с номинальным обмотки требуется соединять по типу «звезда», а номинальным напряжением двигателя будет 380/660 В (по типу «треугольник»).

Следует отметить, что часто используется комбинированное подключение «звездой» и «треугольником». Это делается с целью более плавного пуска электродвигателя. При пуске используется подключение типа «звезда», а затем с помощью специального реле происходит переключение на «треугольник», таким образом, уменьшается пусковой ток. Подобные схемы рекомендуется применять для пуска электродвигателей большой мощности, требующих большого пускового тока. Важно помнить, что при этом пусковой ток превышает номинальный в семь раз.

Существуют и другие комбинации при подключении электродвигателей, например соединение «звездой» и «треугольником» может заменяться двойной, тройной «звездой», а также иными вариантами подключения. Такие способы применяют для многоскоростных (двух-, четырех- и т. д.) электродвигателей.

Асинхронный двигатель питается от трехфазной сети переменного тока. Для работы может использоваться соединение треугольником и звездой. Для того чтобы все смогло стабильно работать, необходимо применять созданные для этого специальные перемычки, будь то соединение звездой или треугольником. Это наиболее удобные варианты для соединения и, соответственно, имеющие высокую степень надежности.

Отличия соединений

Для начала следует выяснить, в чем разница звезды и треугольника. Если подойти к подобному вопросу с точки зрения электротехники, то первый вариант дает возможность двигателю работать более плавно и мягко. Но есть один момент : двигатель не сможет выйти на полную мощность, которая представлена в характеристиках технического плана.

Соединение треугольником дает возможность двигателю в скором времени достичь максимальной мощности. Следовательно, на полную мощность применяется КПД устройства. Однако, есть серьезный недостаток, который заключается в больших пусковых токах.

Борьба с такими явлениями, как высокие показатели пусковых токов, состоит в подключении к схеме реостата пуска. Это дает возможность осуществить гораздо более плавный пуск двигателя и улучшить его рабочие характеристики.

Подключение звездой

Соединение звездой заключается в том, что концы всех 3 обмоток воссоединяются в общую точку под названием нейтраль. Если в наличии имеется нейтральный провод, то такая схема считается четырехпроводной, при его отсутствии - она трехпроводная.

Начало у выводов закрепляется к определенным фазам сети питания. Напряжение, которое приложено к этим фазам, равняется 380 вольтам или 660 вольтам. К основным плюсам такой схемы следует отнести:

  • Безостановочная работа двигателя на протяжении длительного времени и с устойчивостью.
  • Благодаря понижению мощности оборудования повышаются надежность и время эксплуатации для схемы звезда.
  • Пуск привода электрического типа благодаря такому соединению обладает повышенной плавностью.
  • Есть возможность для влияния на параметры кратковременной перегрузкой.
  • При работе корпус у оборудования не станет доступен для перегрева.

Имеется оборудование с соединением обмоток внутри. Поскольку на колодку подобного оборудования ставят только три вывода, то прочие методы соединения не могут быть применимы. Такое исполнение не требует наличия квалифицированных специалистов.

Схема треугольником

Вместо схемы звезда можно использовать соединение треугольником, суть которого в соединении концов и начал обмоток последовательным образом. Конец у обмотки фазы С замыкает цепь и создает целый контур. За счет такой формы получающаяся схема будет более эргономичной.

На каждой из обмоток имеется линейное напряжение 220 или 380 вольт. Из основных достоинств схемы имеются :

  1. Мощность электрических двигателей достигает наивысшего значения.
  2. Применение соответствующего реостата для более плавного пуска.
  3. Значительно увеличенный момент вращения.
  4. Высокие показатели тяговых усилий.

Применяют треугольник в таких механизмах, где требуются весомые пусковые нагрузки и энергия для мощных механизмов. Значительный момент вращения достигается ростом показателей ЭДС самоиндукции. Вызвано такое явление большими токами протекания.

Комбинация из звезды и треугольника

Если конструкция сложного типа, то используют комбинированный метод звезды и треугольника. Использование подобного способа ведет к тому, что сильно возрастает мощность. Но в случае, когда двигатель не может подойти по техническим характеристикам, все будет перегреваться и сгорит.

Чтобы снизить линейное напряжение в обмотках статора, следует применить схему звезда. После снижения протекающего тока начнется увеличение частоты. Схема релейно-контактного типа помогает переключить треугольник на звезду.

Именно эта комбинация выдает наибольшую надежность и значительную продуктивность применяемого оборудования без опасений в плане выхода из строя. Эта схема эффективна для двигателей, где задействована облегченная схема пуска. Но при понижении пускового тока и неизменном моменте ее применять не стоит. Альтернативой служит фазный ротор с реостатом для пуска.

Ток во время пуска двигателя в 7 раз превосходит рабочий ток. Мощность в полтора раза выше при соединении треугольником, пуск с высокой плавностью при этом получается с помощью проводов частотного типа.

Метод воссоединения звездой требует учета того момента, что нужно исправлять перекосы фаз, иначе есть риск выхода оборудования из строя.

Линейные и фазные напряжения при треугольнике равняются между собой. Если требуется включить двигатель в бытовую сеть, то нужен фазосдвигающего вида конденсатор. Таким образом, использование схемы треугольником или звездой зависит от конструкции двигателя и требований бытовой сети. Потому следует внимательно смотреть на показатели двигателя и необходимые параметры, которые требуется увеличить для более эффективной работы конструкции.

Как подключить двигатель по схеме “Звезда-Треугольник”

По схеме подключения двигателей “звезда-треугольник” написано предостаточно. Но в каждой статье есть неточности и ошибки. Авторы просто переписывают друг у друга. Подозреваю, что большинство из них ни разу в жизни не подключали двигатель, а название схемы для них – лишь геометрические фигуры. Поэтому решил последовать народной мудрости “хочешь сделать хорошо – сделай это сам”, и написать эту статью.

Рассказываю, полагаясь на свой опыт и понимание вопроса. Как всегда, буду давать теорию и показывать, как это выглядит на практике.

Для начала, если кто совсем не в теме, из какой области знаний вообще это всё? Речь идёт об одном из распространенных способов подключения трехфазного асинхронного электродвигателя, при котором обмотки двигателя сначала подключаются к питающей сети по схеме “звезда”, а потом – по схеме “треугольник”. В молодых пытливых умах сразу возникнет вопрос – “Зачем это нужно?” ОК.

Зачем нужна схема “Звезда – Треугольник”?

Корень проблемы кроется в пусковых токах и чрезмерных нагрузках, которые испытывает двигатель, когда на него подают питание напрямую. Да что там двигатель – весь привод при пуске скрежещет и содрогается!

ВАЖНО! Если дочитали досюда, . Там очень подробно о том, откуда они берутся, как их узнать, посчитать и измерить.

Особенно это критично там, где нет понижающей передачи – редуктора или ремня на шкивах.

Особенно это важно там, где на валу двигателя насажено что-то массивное – крыльчатка или центрифуга.


Подписывайтесь! Будет интересно.


Особенно это значимо там, где мощность двигателя – более 5 кВт, а скорость вращения большая (3000 об/мин).

Вот такие кабанчики не любят, когда их включают в сеть напрямую

Привод отличается от двигателя, как колесо от покрышки и как .

Так вот, для того, чтобы уменьшить мощность на валу двигателя во время пуска, его включают сначала на пониженное напряжение, он не спеша разгоняется, а потом врубают по полной, на номинальную мощность. Реализуется это не изменением напряжения реостатами и трансформаторами, а более хитро. Но по порядку.

Схемы “Звезда” и “Треугольник”

У любого классического трехфазного двигателя есть три обмотки статора. Они могут иметь разную конфигурацию в пространстве, дополнительные выводы, но их три.

Схема обмоток статора с выводами для трехфазного асинхронного двигателя

Как подключить все эти 6 выводов, если у нашего источника питания всего 3 фазы?

Короче, вот простейшая схема:

Схема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическая

В контактах с временной задержкой все постоянно путаются. У меня – правильно)

Что такое КМ1, КМ2, КМ3, вы уже знаете, а вот КА1 – это реле времени с задержкой при включении. Реле может быть любым, хоть электронным, хоть пневматическим типа ПВЛ. Главное, чтобы контакты переключались из исходного состояния через время задержки после подачи питания на КА1.

Подавать питание на схему (запускать двигатель) можно любыми способами – хоть тумблером, хоть .

Минус такой схемы – есть опасность конфликта между КМ2 и КМ3. Поэтому я не очень люблю такую схему, т.к. она работает “на грани”, и её безаварийность очень зависит от механики и конструкции контакторов. Из-за этого могут подгорать контакты, а может и выбивать вводной автомат. Поэтому обязательно необходима блокировка (электрическая и желательно механическая):

Практическая схема “Звезда-треугольник” с блокировкой

Блокировка реализована на НЗ контактах, подробно об этом и не только . Между катушками показана механическая блокировка, не путать со схемой “Треугольник”!

Это реальная схема, можно её применять. Если что не понятно – спрашивайте.

Кстати, вместо КА1.1 можно поставить НО контакт с задержкой Отключения. То есть, включается сразу после подачи питания, выключается – через время. Но для этого нужно два отдельных реле времени с разными принципами работы, которые должны быть синхронизированы для гарантированной паузы. Именно так и реализуется в специализированных реле времени “Звезда-Треугольник”.

Да, ещё замечание. Иногда включение питания общего контактора КМ1 реализуют не напрямую, а через НО контакт “Звезды” КМ2, затем КМ1 становится на самоподхват через свой НО контакт. Это необходимо для дополнительной проверки работоспособности реле времени КА1.

Временные диаграммы работы схемы “Звезда-Треугольник”

С привязкой к моей схеме управления, диаграммы включения контакторов:

Временные диаграммы схемы управления звезда-треугольник

Тут вроде всё понятно, но есть одно важное замечание. Ещё раз. Между зеленой и красной областями обязательно нужен небольшой зазор (пауза). Его может не быть (пауза = 0), но эти области могут налазить друг на друга, если используются контакторы с катушкой постоянного тока (=24 VDC). В особенности при использовании обратновключенного диода (а он обязателен!), время выключения может быть больше времени включения в 7-10 раз!

Это я к тому, что однажды мучался с такой схемой, в ней выбивал периодически вводной автомат. Поставили спец.реле с паузой, проблема была решена!

Реальный пример схемы

Вот реальный пример такой схемы на электронном реле времени:

Фото схемы звезда-треугольник с управлением на таймере и гальванической развязкой на трансформаторе.

Слева направо в нижнем ряду: КМ1, КМ2, КМ3, КА1.

А вот пример схемы с управлением от контроллера:

Звезда-треугольник, компрессор, управление от программы контроллера

Видео, как щёлкают контакторы в этой схеме:

Вот как красиво оформили схему немцы в своём компрессоре:

Схема компрессора Звезда – Треугольник

На входе схемы – три провода, на выходе – шесть. Всё сходится)

Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную

Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.

Шильдик двигателя 220 / 380 В 0,37 кВт

На оборотной стороне крышки борно, как обычно, приведена схема:

Схема подключения 220 – 380 на крышке двигателя

Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:

Клеммы двигателя в подключены в схеме “Звезда”

Откручиваем гайки М4, снимаем перемычки и провода питания:

Разбираем схему, откидываем провода

Собираем схему в треугольник, на пониженное напряжение 220 В:

Собираем треугольную схему на 220 В

Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!

Кстати, по частотникам планирую цикл статей, подписывайтесь !

Особенность работы в “Звезде”

В соответствии с ГОСТ 28173 (МЭК 60034-1) двигатели могут эксплуатироваться при отклонении напряжения ± 5 % или
отклонении частоты ± 2 %. При этом параметры двигателей могут отличаться от номинальных, а превышения температуры обмоток могут быть более предельного по ГОСТ 28173 (МЭК 60034-1) на 10 °С.

К чему это я? Дело в том, что при пуске, когда двигатель работает в “Звезде”, он работает не в режиме (напряжение отличается на 70%!), что может привести к его перегреву, если это будет длиться долго. Будьте внимательны, защищайте двигатель от перегрева и перегрузки! Но это уже совсем другая история)

Видео

Представляет собой полезное устройство, которое применяется во многих сферах деятельности человека, начиная от бытовой жизни, заканчивая промышленностью. В различных шлифовальных машинах, на конвейерах, станочных агрегатах, системах вентиляции промышленного типа и другое. Электродвигатель имеет 3 вывода , поэтому может быть выполнено соединение звезда и треугольник к трехфазной сети переменного тока или трансформатору.

Конструкция двигателя

Обмотки располагаются на статоре, а ротор выполнен короткозамкнутым в виде беличьего колеса: алюминиевые или медные кольца по торцам соединены между собой параллельными перемычками. Статор намотан специальным образом с определенным количеством полюсов, что зависит от параметров мощности и питающей сети. Бытовые вентиляторы имеют всего 2 полюса, промышленные тяговые электродвигатели по 8 и более.

Преимущества использования асинхронных электродвигателей со схемой включения звезда или треугольник очевидны и заключаются в следующем:

Способы подключения к сети

Сейчас попытаемся разобраться, что такое звезда и треугольник, в чем разница между ними. Асинхронный 3-фазный электродвигатель имеет 3 обмотки, которые, соединены определенным образом. Они могут подключаться как к сети 380 В, так и к переменному напряжению 220 В. Поэтому двигатель можно считать универсальным, но его качество работы напрямую зависит от способа подключения к сети или отдельному питающему трансформатору.

Например, в режиме разгона, когда тот подключается последовательно в цепь двигателя для снижения пускового напряжения. По такому принципу действует частотный преобразователь, регулируя начальный момент посредством изменения частоты, не допуская превышение потребления мощности более, чем на 10-20%. В обычном режиме запуска асинхронный двигатель потребляет до 600% от номинала, что может стать причиной автоматического выключения вводных автоматов.

Обычно при открытии клеммной коробки на моторе можно увидеть 3 вывода и дополнительную скрутку. Это говорит о типе подключения обмоток, которым в этом случае является звезда. Раскрутив общее соединение, вы получите 6 выводов, являющиеся концами и началами каждой из 3-х обмоток. Поэтому появляется возможность выполнить подключение по схеме треугольника.

Иногда в зависимости от способа управления и алгоритма образования управляющего напряжения в приводе требуется переключение со звезды на треугольник. И делать это можно в автоматическом режиме, например, при разгоне, чтобы электродвигатель сразу обеспечивал высокий крутящий момент. Это чаще всего используется в частотных системах управления, где требуется более жестко регулировать динамику двигателя и контролировать скорость вращения.

Когда и какую схему лучше использовать, зависит от требований, но каждый из способов имеет свои особенности. Например, они заключаются в развиваемой и потребляемой мощности, разнице линейных и фазных напряжений, а, соответственно, динамических и электрических показателях.

Основные формулы

Перед тем, как ознакомиться с особенностями, как соединить электродвигатель звезда-треугольник, стоит вспомнить основные формулы расчета мощности и соотношения напряжений и токов между ними. При расчете устройств с питанием от сети переменного напряжения или отдельного трансформатора используют понятие полная мощность. Она обозначается большой буквой S и находится как произведение действующего значения напряжения и тока U × I . Также, есть возможность расчета, исходя из ЭДС, при котором S = E × I .

Кроме полной, также различают:

  • активную;
  • реактивную мощность.

В первом случае она обозначается буквой P = E × I × cos φ или P = U × I × cos φ . Во втором случае Q = E × I × sin φ или Q = U × I × sin φ . Где в формулах E – электродвижущая сила, I – ток, φ – угол между напряжением и током, создаваемым сдвигом фаз в обмотках.

Если обмотки двигателя одинаковы между собой по всем параметрам, то все виды мощностей определяются как произведение тока и напряжения, умноженного на 3.

Соединение двигателя в звезду

Наиболее часто используемым является именно соединение в звезду, потому что в таком режиме обеспечивается необходимая мощность и гарантируется хороший крутящий момент на валу. Но стоит понимать, что недогруженный двигатель в 3-фазной сети будет потреблять лишнюю мощность, поэтому лучше использовать менее мощный мотор или регулировать частоту питающего трансформатора или привода, в зависимости от источника напряжения.

А чтобы определить электрические параметры сети , необходимо использовать соотношение √3. Первоначально следует отметить, что при соединении в звезду линейные и фазные токи одинаковы, а напряжение определяется по формуле U = √3 × U ф. Найти из нее фазное напряжение несложно. Соответственно, мощности определяются с учетом этого соотношения:

S = √3 × U × I

Следует помнить, что если на трансформаторе кроме 3-х фаз имеется также и 4-ый вывод со средней точки, то он должен быть подключен к электродвигателю .

Особенности применения подключения в звезду

На предприятиях, да и во всех остальных сферах, основным типом соединения 3-фазных двигателей является именно звезда, а питаются они от общей подстанции или отдельного трансформатора, обеспечивая, таким образом, гальваническую развязку. Схема включения его обмоток особо не влияет на работу двигателя. Если они соединены в треугольник , то напряжение на выходе составит в 1.73 раза меньше и подключив двигатель к его обмоткам по схеме треугольника можно добиться примерного того же момента, что и в обычном режиме.

Фазные токи при соединении по схеме в звезду равны, а напряжение, подводимое к каждой из обмоток, в 1.73 раза меньше. Двигатель набирает свой момент за более длительное время, но при этом не перегревается. В таком режиме используются моторы на вентиляторах, помпах, шнеках и прочих агрегатах. Но, если необходимо увеличить момент и тяговую способность, то его кратковременно переключают в треугольник.

В таком случае к обмоткам подводится полное напряжение сети, а, следовательно, и увеличенный ток, что приводит к выделению дополнительной мощности на валу и нагреву мотора. Режим переключения на треугольник применяют для ускоренного запуска двигателя, а потому возвращают схему соединения в исходное состояние. Длительная работа в таком режиме приведет к скорому выходу из строя.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы - C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая - C2 и C5, а третья - C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):


(~ 1, 220В)


220В/380В (220/380, Δ / Y)

(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
- использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

Использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:


При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

Регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
- при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
- при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

Технический директор
ООО "Насосы Ампика"
Моисеев Юрий.